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A B S T R A C T

Climate change has significant effects on critical ecosystem functions such as carbon and water cycling.
Vegetation and especially forest ecosystems play an important role in the carbon and hydrological cycles.
Vegetation models that include detailed belowground processes require accurate soil data to decrease
uncertainty and increase realism in their simulations. The MC2 DGVM uses three modules to simulate
biogeography, biogeochemistry and fire effects, all three of which use soil data either directly or
indirectly. This study includes a correlation analysis of the MC2 model to soil depth by comparing a subset
of the model’s carbon and hydrological outputs using soil depth data of different scales and qualities. The
results show that the model is very sensitive to soil depth in simulations of carbon and hydrological
variables, but competing algorithms make the fire module less sensitive to changes in soil depth.
Simulated historic evapotranspiration and net primary productivity show the strongest positive
correlations (both have correlation coefficients of 0.82). The strongest negative correlation is streamflow
(�0.82). Ecosystem carbon, vegetation carbon and forest carbon show the next strongest correlations
(0.78, 0.74 and 0.74, respectively). Carbon consumed by forest fires and the part of each grid cell burned
show only weak negative correlations (�0.24 and �0.0013 respectively). In the model, when the water
demand is met (deep soil with good water availability), production increases and fuels build up as more
litter gets generated, thus increasing the overall fire risk during upcoming dry periods. However, when
soil moisture is low, fuels dry and fire risk increases. In conclusion, it is clear climate change impact
models need accurate soil depth data to simulate the resilience or vulnerability of ecosystems to future
conditions.
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1. Introduction

Climate change is an important driver of forest dieback and
species migration with increases in drought, early snow melt,
reduced snow depth, pest outbreaks, and fire risk (McKenzie et al.,
2004; Mote et al., 2005; vanMantgem et al., 2009; Allen et al.,
2010). In the North Pacific landscape of the USA, precipitation as
rainfall is projected to increase in winter and spring, and decrease
in summer, while temperatures rise from 2 to 5� C by 2080
(Mote and Salathé, 2010). Vegetation models suggest that forest
cover may increase at high elevations and latitudes in response to
wetter winters, and dramatically decrease at lower elevations and
latitudes due to severe competition for water from shrubs and
Abbreviations: ASW, available soil water storage capacity; DGVM, dynamic
global vegetation model.
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grasses, even without consideration of future water needs from
human land use (Climate Impacts Group (CIG), 2011). However,
some vegetation models suggest possible vegetation shifts to
lower elevations where water might be more readily available as
higher elevations become drier (Crimmins et al., 2011).

Climate-related stress can also affect forests indirectly by
increasing their vulnerability to pests and pathogens. Littell et al.
(2009) projected a reduction of climate suitability for Douglas fir in
the Puget Trough as well as increases in wildfires and mountain
pine beetle outbreaks, which would affect tree growth and survival
in the region. Lodgepole pines in British Columbia, Oregon,
Washington and California have also shown increased vulnerabili-
ty to climate change in recent decades and have been subject to
well-documented beetle attacks (e.g., Raffa et al., 2008). Vegeta-
tion models indicate that lodgepole may disappear from most of its
current range by the end of this century (Coops and Waring, 2011).
Further North, Alaskan Yellow Cedar decline in southeast Alaska
and portions of British Columbia has also been connected to
warming air that melts snow and exposes roots to lethal
subfreezing temperatures (D’Amore and Hennon, 2006).
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Changes in available soil moisture are increasing tree vulnera-
bility across many systems, and available soil water storage
capacity (ASW) thresholds have now been documented beyond
which forest decline starts to occur during multi-year droughts
(Peterman et al., 2013; Mathys et al., 2014). Soil physical
characteristics are important for assessing ASW, an essential
component of ecosystem functions, including carbon and nutrient
cycling, as well as succession through seedling establishment in
post-disturbance forests (USDA NRCS Soil Survey Division Staff,
1993; Neilson and Drapek,1998; Dale et al., 2001; Allen et al., 2010;
Puhlick et al., 2012). Simulation results from vegetation models are
used in global and regional assessments in an attempt to forecast
ecosystem responses to climate change (Cramer et al., 2001; IPCC,
2007; Handler et al., 2013). The complex interactions between
plants and pests or pathogens, often constrained by ASW can only
be simulated if reliable soil data are available. Soil data have
historically been a primary source of uncertainty for modelers who
simulate belowground-processes such as root growth and
decomposition as well as hydrological processes (Allen et al.,
2010; Coops et al., 2012). In this paper, we report results from a
correlation analysis of a dynamic global vegetation model (MC2)
that demonstrates the importance of soil inputs in simulations of
vegetation dynamics in the 21st century.

1.1. Background and model description

The MC1 dynamic global vegetation model (DGVM) was
developed for the vegetation/ecosystem modeling and analysis
(VEMAP) project (Bachelet et al., 2001). It consists of three
component modules (Fig. 1): (1) a biogeography module derived
from the static biogeography model MAPSS (Neilson, 1995), (2) a
biogeochemistry module, derived from the CENTURY model
(Parton et al., 1987), and (3) a dynamic fire model called MCFire
(Lenihan et al., 1998). The MAPSS model is used solely to
determine the potential life forms and vegetation types present
on the landscape, using a twelve-month long-term average
climate to characterize each grid cell during the equilibrium
phase of the model (Bachelet et al., 2001). A modified version of
the CENTURY model is then called to simulate the carbon and
nitrogen pools associated with the potential vegetation types
(Bachelet et al., 2001). These initial conditions are used to start
Fig. 1. Graphical representation of MC2 DGVM.The biogeography component, uses 

biogeochemistry component uses algorithms from a modified version of the biogeochem
both fire occurrence and effects (Lenihan et al. 1998).
the “spinup” phase during which the full DGVM simulates:
(1) biogeography, using a set of climate and biomass threshold
rules, (2) carbon and nitrogen cycling, using a modified version of
CENTURY version 4 and (3) fire occurrence and effects, using the
dynamic fire module. The DGVM is run iteratively for 600 years
using a de-trended historical monthly climate until net ecosystem
productivity nears zero and the fire return interval (FRI) nears
historical estimates (Leenhouts, 1998). Once this “spinup” phase
is completed, the DGVM is run with historical climate and future
climate projections.

In the MC2 DGVM, the hydrology algorithms from CENTURY are
used to calculate hydrological flows. The model uses soil depth,
texture, rock fragment content and bulk density to estimate
monthly available soil moisture. Because the MC2 DGVM uses
these soil characteristics to regulate the water fluxes that directly
affect plant growth and decomposition, we expect changes in these
inputs to result in changes in simulated carbon and hydrology.
However, to date, no formal analysis of the relationship between
soil characteristics and model simulations has been performed.

Conklin (2009) used MC1 to simulate vegetation shifts in
Yosemite National Park and observed that the model was over-
estimating carbon pools and simulating closed-canopy forests at
the top of the Sierras. He found that the STASGO-based US soils
map that had been used (e.g., Bachelet et al., 2008; Lenihan et al.,
1998) included overestimated soil depths, especially at high
elevations (Conklin, 2009). In the original data, he found deep soils
at the top of Half Dome, where there should be no soil or
vegetation. He used a modified soil dataset based on expert
opinion for Yosemite and simulated the more realistic bare rock at
the crest of the Sierras.

The NATSGO soil dataset (1:7.5 Million scale), originally used in
MC1, was replaced by the STATSGO (1:250,000 scale) national soil
dataset for the USA (personal communication Kern, 1994). Since
then, the finer scale State Soil Geodatabase (SSURGO – average
1:24,000 scale) has been expanded to cover large areas at the state
and county level (USDA NRCS, 2014), although the data do not yet
provide full coverage of the U.S. For this paper, we conducted
our correlation analysis using the MC2 model, the most recent
C++ version of MC1, to evaluate whether substituting the soil depth
layer from STATSGO with SSURGO data, where available, would
result in significant changes in carboncyclingand hydrological flows.
rules derived from the static biogeography model MAPSS (Neilson, 1995), the
ical model CENTURY (Parton et al. 1987) and the dynamic fire component includes
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2. Methods

2.1. Study area

Our study area is the portion of the North Pacific Landscape
Conservation Cooperative (NPLCC, 2014) within the conterminous
United States. This includes the states of Washington and Oregon,
west of the Cascade Mountains, and a fraction of northern
California, west of the Sierra Nevada mountains (Fig. 2), between
the latitudes 39 and 49�. The climate is maritime with moderate
winter temperatures and precipitation falling mostly as rain during
winter and spring seasons. The region is largely forested with some
grasslands and oak savannas in lowland regions, reflecting the
“rain-shadow effect” of the Coast Range to the west and the high
Cascades to the east. Soils range from multi-colored Spodosols on
the coast to ancient Alfisols and Ultisols in the foothills, and fertile
Mollisols in the valleys. High, steep mountain slopes may have less
developed Inceptisols and Entisols or even bare rock outcrops.

2.2. Soil data preparation

To generate the most reliable soil dataset, we attempted to
maximize the use of state soil data. We downloaded SSURGO and
STATSGO data from the NRCS Geospatial Data Gateway website
(USDA NRCS, 2012) in spatial and tabular forms. First, all of the
Fig. 2. Study area. Map of the study area for the continental portion of 
spatial data were aggregated from the county and national soil
datasets into a single soil map covering the entire study area. Then,
for every polygon, a Python script was used to extract:
(1) attributes directly from the polygon tables of SSURGO and
STATSGO databases, (2) attributes for the dominant component
within the polygon from the “component” table (the component
with the highest representative percent of the polygon), and
(3) attributes for the soil layers for all recorded components. For
each component, the arithmetic mean of all non-zero values across
all soil layers was recorded. Components within each polygon were
combined using an area-weighted algorithm based on the
normalized percent of each component relative to the others.

The soil datasets include various gaps and errors. While we
prefer to use SSURGO soil data because of their finer spatial scale,
they often include gaps over large landscapes. Firstly, where
SSURGO data were not available, STATSGO data were used to fill
these gaps. Secondly, we used the “select by attributes” tool in
ArcMap (ESRI, 2011) to locate water bodies, marshes and dams and
gave those units a “missing value” of �9999. We also selected rock
outcrops, badlands and urban lands, and set the depths to zero.
Thirdly, where there were NULL values for minimum depth, we
used the polygon name(s) to look up the official soil series
descriptions on the NRCS website (USDA NRCS, 2014) and entered
the minimum depth recorded for that series. For associations of
several soil series within one polygon, we entered the dominant
the North Pacific landscape conservation cooperative (shaded area).



Fig. 3. Soil depth maps. Soil depth (left-A) from Jeff Kern derived from STATSGO data (Kern 1994, 1995,5) and soil depth derived from SSURGO and STATSGO data (right-B) by
Wendy Peterman (this paper).
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soil series value for minimum depth to bedrock. After processing
all polygons this way, there were 8008 total polygons with
4606 null values replaced by soil depth values ranging from 0 to
3860 mm. Where the values could not be filled, the value was set to
�9999. The polygons were converted to raster with a 3000 grid. The
final soil depth grid used in the simulations contained a total of
5676 cells, of which 88.4% held SSURGO data, and 11.6% held
STATSGO data.

Differences in soil depth between the Kern dataset and our
dataset (Fig. 3) ranged from � 1530 to 1700 mm. A comparison
between soil depth and elevation for both soil datasets (Fig. 4)
illustrates that the coarse resolution STATSGO-based depth dataset
Fig. 4. Graph of elevation versus mean soil depth. Comparison between the
relationship of soil depth to elevation for both the STATSGO-based soil depth data
provided by Kern and the SSURGO-based soil depth data provided by Peterman.
(depth Kern) shows less overall variation (standard
deviation = 161 mm) than the finer-scale SSURGO–STATSGO hybrid
depth dataset (depth Peterman, standard deviation = 247 mm). The
‘depth Kern’ soils are on average 394 mm deeper than the ‘depth
Peterman’ soils. Both depth datasets show a general downward
trend in depth with increasing elevation, however the slope for
depth Kern versus elevation is �0.03 (R2 = 0.018), and the slope for
the depth Peterman versus elevation is �0.23 (R2 = 0.35).

2.3. Soil depth in the MC2 model

MC2, the latest C++ version of the MC1 dynamic global
vegetation model, uses static soil and monthly climate inputs to
simulate plant dynamics, carbon pools and fluxes as well as fire
occurrence and effects. All variables in the MC2 model are in a
rectangular gridded format with a geographic projection of WGS
1984 and cell size of 3000. Climate variables include precipitation,
minimum and maximum temperatures, vapor pressure and wind
speed. Other inputs include elevation and eleven soil inputs
representing bulk density, depth to bedrock, sand and clay content,
as well as rock fragment content. Percent sand, clay and rock
fragment data are each provided for surface (0–0.5 m), intermedi-
ate (0.5–1.5 m) and deep (>1.5 m) soil layers. MC2 uses the depth
layer to determine how many of these soil layers to use for each
grid cell. For example, if a cell has a maximumdepth of 0.1 m,
MC2 would only look at the surface grids for percent sand, clay and
rock fragment data. On the other hand, if the maximum depth of a
cell is 1.7 m, MC2 would look at each of the three grid layers for
percent sand, clay and rock fragment data. For this analysis, we
only modified the minimum depth to bedrock variable. Depth is
used to determine the total number of soil layers (Fig. 5), including
rooted layers, and is therefore critical to simulating available
soil moisture content and hydrological fluxes. The top four soil
layers are each 0.15 m thick, and the bottom six soil layers are



Fig. 5. Flow diagram of the CENTURY hydrology model used in MC2.“Nlayer” is the total number of soil layers, “nlaypg” the number of rooted soil layers, “avh20” the available
soil water, “tr” the transpiration flow fraction, “aglivc” the aboveground grass biomass and “rleavc” the tree leaf carbon pool. (Parton et al., 1987).

Table 1
Correlations between the differences in soil depth and the
difference in 30-year means for a subset of ecosystem processes
simulated by MC2 with the two soil depths datasets (see text).

Variable Correlation

Ecosystem carbon 0.7835
NPP 0.8170
Stream flow �0.8166
Forest carbon 0.7442
Carbon consumed by fire 0.2389
Part of cell burned by fire �0.0013
Actual evapotranspiration 0.8161
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each 0.3 m thick (Bachelet et al., 2001). The rooting depth for
grasses is constrained to the top six soil layers, but tree roots may
use all ten soil layers.

ASW is calculated using the difference between “field capacity”
and “wilting point” (Gupta and Larson,1979). “Field capacity” is the
moisture content of the soil following a precipitation or snowmelt
event after the excess water has drained through gravity flow, and
“wilting point” is the moisture content of the soil when the tension
required for plant roots to extract the water from the soil is too
great for their survival. It is important to recognize that the
standard wilting point (the soil water content held at 15 bars of
tension) and field capacity (the soil water content held at 1/3 bar of
tension) are derived for farm crops that have fine, shallow root
systems. In reality, plants and trees have a wide range of wilting
points that are not individually represented in models of
vegetation water balances.

In this research, maximum ASW is used as a limit to the amount of
water that can be received, stored and redistributed in a soil profile.
MC2 uses separate inputs for mineral soil depth and bulk density to
calculate ASW for each cell in a spatial grid (Bachelet et al., 2001). In
the model, soil depth does not influence runoff, but it does influence
streamflow and baseflow (Bachelet et al., 2001). Using a simple
bucket approach, monthly precipitation drains through the soil
profile until it reaches bedrock, and then it is lost through
belowground flow (Bachelet et al., 2001). There are no algorithms
to simulate unsaturated flow in the current version of the model.

2.4. Model correlation analysis

For the LandCarbon Project (USGS, 2011), MC2 was run for the
conterminous USA under nine climate and emissions scenarios at
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3000. Since large runs of MC2 are processor-intensive and time-
consuming, “strided” runs using subsamples of the input datasets
were first used to calibrate the model for the historical time period
(1895–2005) (Bachelet et al., 2013). To create the “strided” data, we
resampled the data for every tenth row and column of the gridded
datasets. To quickly perform our correlation analysis, we decided to
Fig. 6. Correlation maps for carbon and hydrology variables. Percent change in 30 yea
correlations (0.7–1.0) with the difference in soil depth: (A) total ecosystem carbon, (B)
evapotranspiration.
use the same method, so we generated a new strided soil data set
and ran the model with strided 3000 climate data for our study area.
All model runs were configured with fire suppression turned on.

Historical vegetation simulations for the LandCarbon project
were compared to Kuchler’s map of potential natural vegetation for
the United States (Bachelet et al., 2013). Initial comparisons
r means of a subset of MC2 simulated ecosystem processes with strong positive
 forest carbon, (C) vegetation carbon, (D) net primary productivity and (E) actual
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showed an over-estimation of grasslands in the northern Great
Plains of the US, so the model was calibrated to adjust the
biogeography thresholds and create better agreement between
modeled and mapped vegetation types (Bachelet et al., 2013).

Previous MC1 and MC2 simulations used soil data for the
conterminous USA originally provided by Jeff Kern for the VEMAP
project (Kern 1994, 1995,5). Melillo et al. (1995) projected and
resampled the soils data to a finer scale at 10 km, based on
a gridded soil conservation service national level (NATSGO)
database. Cluster analysis was used to group the 10 km subgrid
elements into 1–4 dominant (“modal”) soil types for each 0.50 cell.
Using this approach, cell soil properties were represented by one or
more dominant soil profile that might not correspond to realistic
soil characteristics in the region.

For our correlation analysis, we substituted the standard soil
depth that had also been used for the LandCarbon runs (depth
Kern) with a new depth layer developed specifically for this
study (depth Peterman) and left the other 10 soil variables
(representing bulk density and soil texture) unchanged. We ran
MC2 with strided input data for our study area for the historical
period using the same configuration settings used in the
LandCarbon project. Once the runs were completed, we correlat-
ed the differences in depths between the two soil input datasets
(depth Kern–depth Peterman) with differences in the 30-year
means of carbon, fire and hydrology model results (LandCarbon
30-year mean – this study’s 30-year mean) using Pearson’s
correlation coefficients. The model was run for 111 years
(1895–2005), but we used the average of the most recent
30- years in our comparisons. Differences between any two
variables were calculated using the “ncdiff” command in the NCO
toolbox (Zender, 2014). Correlation coefficients were calculated
using a Python script that eliminated outliers greater than three
standard deviations from the mean for each variable’s 30-year
average differences. Vegetation cover is a discrete variable, so we
used the modal value of the last 30-years of the historical period
to compare differences between the simulations. In ArcMap we
calculated the difference in area simulated for each vegetation
type and compared that with the total area simulated.
Fig. 7. Carbon consumed by wildfire map. Difference (g C m�2) in 30-year mean carbon co
and the other using Peterman (this paper) soil depth.
3. Results

All but three of the simulated variables chosen for this study
showed strong correlations to differences in mineral soil depth
(Table 1). Ecosystem carbon, net primary production, forest
carbon, evapotranspiration and vegetation carbon (Fig. 6) all
showed strong positive correlations (0.7–1.0) with changes in
depth, while carbon consumed by wildfire only showed a weak
positive correlation (0–0.3). Correlations were most evident in
northern California (Fig. 7). Stream flow values showed a strong
negative correlation (�1.0 to �0.7) with differences in mineral
depth, and the difference in the fraction of the grid cell burned by
wildfire showed a weak negative correlation (�0.3 to 0) (Table 1).
We found some small differences between the two vegetation
maps simulated with the 2 soil datasets (Fig. 8) at this scale. For
approximately 92% of the study area, there was no difference in
simulated vegetation. Approximately 3% of the area that was
simulated as temperate needle leaf forest with the Kern soil data
was simulated as temperate needle leaf woodland with the new
soil dataset. This means that the original runs predicted the cells as
having a biomass greater than 1150 gm�2, while this study’s data
predicted those cells as having less than 1150 gm�2 of biomass.
Approximately 4% of the area went from being predicted with the
original data to a null value with the new soil data, probably due to
zero values in the new soil depth dataset. The Kern soil dataset had
no zero values for soil depth.

4. Discussion

We expected that soil depth would affect MC2 carbon
simulations, since its three modules each use soil depth either
directly or indirectly. Biogeography rules use biomass thresholds
that are indirectly linked to soil depth through soil water
availability for plant growth. The biogeochemistry algorithms
from CENTURY use soil depth to calculate water availability and
nutrient cycling. The fire module of MC2 uses soil moisture as a
proxy for fuel moisture, which is used as one of the thresholds for
fire risk. The strong correlations between the change in soil depth
nsumed by wildfire between the two MC2 simulations, one using Kern (1994,1995),)



Fig. 8. Simulated vegetation difference map. This map shows the cells where the 30-year mode of the simulated historic vegetation type differed between the simulations
with depth Kern versus depth Peterman.
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and resulting differences in carbon pools and streamflow show
that the biogeochemistry module is sensitive to soil depth.
Decreases in soil depth lead to decreases in net primary
productivity and ecosystem, forest and vegetation carbon as
expected, since it reduces overall soil water availability. The strong
positive correlation to simulated evapotranspiration shows that
vegetation in the model is able to respond to the greater or lesser
amount of available soil water provided by the change in soil depth
to meet the evaporative demand. The strong negative correlation
to stream flow indicates that the shallower soils were less rooted
than deeper soils. The related transpiration fluxes, calculated for
each soil layer, were better able to use the available soil moisture
and thus reduce the amount of water draining through the profile.

The MC2 fire module uses soil moisture as a proxy to determine
coarse fuel moisture. Below a set fuel moisture threshold,
conditions are met to start a fire in a given cell as long as other
conditions (fuel load and climate) allow it. A shallower soil depth
reduces soil moisture available to plant growth thereby limiting
fuel production and thus limiting fire risk. Such a combination of
competing thresholds (shallow soil depth means low fuel moisture
but also low fuel load) may explain the low correlation between
soil depth and the amount of biomass consumed by wildfire, and
an even lower correlation for area burned.

Most of the large differences in simulated carbon, hydrology
and fire effects are seen in northern California (see Figs. 7 and 8).
This suggests the dominance of climate over soils as the
determining factor in productivity and nutrient and water cycling
in the Pacific Northwest. In western Oregon and Washington,
where there is high annual rainfall, available soil water storage
capacity is not as limiting to plant growth. In California, however,
the drier climate makes the influence of soil characteristics more
important. Not only does soil depth limit the growth of root
systems in the model, the higher evaporative demand of the more
arid environment combined with shallower soils places greater
constraints on plant productivity in the region.

5. Conclusion

Concerns that MC2 was simulating closed-canopy forests on the
peaks of Yosemite National Park raised questions about the
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model's representations of soil characteristics. Conklin (2009)
found that the problem was attributed to inaccuracies in the soil
input data. In that case, by revising the soil dataset with local
knowledge, the problem was resolved. To better evaluate the
model’s sensitivity to soil depth, we performed a correlation
analysis over the North Pacific LCC domain evaluating the
relationship of a subset of model results to two soil datasets,
one used previously and originally created for the VEMAP project
at coarse resolution and a new dataset created with finer scale soil
information more relevant for regional analysis.

Correlations between changes in soil depth and resulting
differences in simulated carbon and water fluxes were strong and
demonstrated the expected responsiveness of the model to soil
depth. Weak correlations between changes in soil depth and
changes in fire effects reflect competing drivers of fire occurrence
and effects. Fire occurrence and effects depend on high fuel loads
driven by high plant productivity and high soil water availability, as
well as by dryness of fuels driven by low soil water associated with
shallow depth. The small change in simulated vegetation cover
reflects the climatic variability of the study area. Only in northern
California, where winter precipitation is less abundant than in
western Oregon and Washington, does soil depth affect the
potential vegetation type simulated by the model.

This modeling exercise demonstrates the need for detailed and
accurate soils data for more realistic simulations of ecosystem
processes. Carbon sequestration potential and the amount and
timing of water provision are highly valued ecosystem functions
that can only be projected with the best soil data available.
Therefore, efforts to map soils with better accuracy and precision
are essential to decreasing uncertainty and increasing the
“realism” of climate change impacts models.

Some interesting projects that could develop from this research
are: (1) correlation analysis of how MC2 simulations are affected
by finer scale texture input data, (2) greater development of the
role of soils in the MC2 hydrology algorithms, especially the
calculation of runoff and unsaturated flow, and (3) more
exploration into the details of how soils are used in the
MC2 fire module and how this can be improved.
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