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Introduction 

The objective of this project was to use relatively recent fire severity data to create scientifically 
defensible maps of areas that may be at risk of high-severity fires in the Klamath region of northern 
California and southern Oregon over the next decade or so based on vegetation, terrain, and 
climate variables. As a first attempt of this nature for the region, the results should be interpreted 
with caution. Modeling fire risk is an inherently uncertain task given the stochastic nature of fire 
and how its effects are influenced by ignition timing and location, terrain, fuel conditions, and 
weather conditions and firefighter tactics during a fire. Many of these factors are not mapped or 
available for use in statistical analyses or predictive models, especially how real-time weather 
conditions and fire-fighting actions may have influenced fire behavior and ecological effects. Our 
intent was therefore to map the potential for large, severe fires based on available, landscape-
scale, and longer-term data, not to predict real-time fire behavior nor to make precise predictions 
about future fires. Furthermore, at the time these models were prepared, climate data were not 
yet available at appropriate spatial resolution to correlate with fire severity data after the year 
2010, which constrained our temporal window for model creation; and of course, climate and its 
effects on fire regimes are rapidly changing.   

All of these issues add significant uncertainty to our landscape-scale predictions about where large 
severe fires are likely in the future. These results should therefore be considered preliminary and 
interpreted with appropriate caution as representing hypotheses about where severe fires may be 
more likely in the near future rather than as specific predictions about future fires. As better data 
become available, we urge improving on these models. 

This effort complements CBI’s effort to model habitat connectivity for forest species of concern in 
the region (Pacific marten and Pacific fisher)1 by identifying important habitat core and connectivity 
areas that may be threatened by severe fires or forest management actions. The results of these 
preliminary fire-severity risk maps were overlaid onto modeled habitat and potential movement 
corridors for fisher and marten to map where habitat and population connectivity may be at 
greatest risk. The results can be used by USFWS in assessments of species’ status and risks, and to 
help prioritize potential management interventions (e.g., fuels management), albeit with 
appropriate caution. 

This is the first attempt we know of to prepare higher-resolution, statistically valid fire risk maps for 
this region. This information is needed because many USFWS Section 7 consultations involve fire 
and fuels management projects, and large high-severity fires can at least temporarily threaten 
population viability for at-risk species. The results can inform Strategic Habitat Conservation 
priorities of the Yreka USFWS Field Office and the greater Klamath Basin Demonstration Project.   

                                                      
1 US Fish & Wildlife Service Cooperative Agreement # F17AC00856 
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Methods 

We statistically compared locations of high-severity fire patches from 1984 (when fire-severity 
mapping began) to 2010 (the most recent appropriately scaled climate data) to environmental 
variables likely to influence fire risks (vegetation, terrain, land-use, and climate variables). We used 
the potential predictive variables to create multivariate models of severe fire risk using the MaxEnt 
program (Phillips et al. 2006), training and testing models with randomly distributed points within 
large (>1000 ac) high-severity fire polygons from 1984-2010. 

Modeling Extent and Subregions 

We modeled fire risks over the entire Klamath study area as well as in four subregions to better 
capture finer-scale regional patterns (Figure 1). We had planned to use ecological subsections to 
subdivide the study area, but they proved too small to provide adequate sample sizes of large, 
severe fires for statistical models. We therefore grouped ecological subsections or portions of 
subsections into four subregions based on ecological and climatic similarities, while maintaining 
adequate fire sample sizes within each.  

Portions of the Northern California Coast and Northern California Coast Ranges were combined to 
create subregion 1a. This is the smallest subregion at 24,413 km2 and has the lowest mean 
elevation (639 m; range -2 to 2458 m). It consists mostly of evergreen forest (52%) and shrub/scrub 
habitats (23%; Table 1). Its climate is strongly influenced by the Pacific Ocean, especially near the 
coast. Private landowners account for 62% of the area, followed by U.S. Forest Service (USFS), with 
22%.  

Subregion 1b, at 49, 217 km2, comprises the entire Klamath Mountains ecoregional section as well 
as portions of Northern California Interior Coast Ranges and Oregon and Washington Coast Ranges. 
Elevation in this subregion ranges from -4 to 2746 m, with a mean of 767 m. It also consists mostly 
of evergreen forest (53%) and shrub/scrub vegetation (21%). The majority of the area is under 
private and USFS ownership (42 and 41% respectively). 

Subregion 2 comprises the Southern Cascades ecoregional section combined with portions of 
Willamette Valley, Western Cascades, Sierra Nevada Foothills, and Sierra Nevada. This subregion 
has an area of 42,003 km2 and has the largest elevation range (mean 1263 m, range 49 – 4304 m). 
Evergreen forest covers 67% of the area. USFS is the majority landowner, at 52%, with another 34% 
under private ownership. 

Subregion 3 is the largest (58,173 km2), eastern-most, and highest-elevation (mean of 1532; range 

of 847 – 3003 m) subregion. It comprises the Modoc Plateau ecosection and portions of the Blue 

Mountain Foothills, Eastern Cascades, and Northwestern Basin and Range. This is the most inland 

of the subregions, with a generally warmer and drier climate, and is dominated by shrub/scrub 

vegetation (50%). Land ownership is a mix of USFS (31%), Bureau of Land Management (22%), and 

private (22%). 
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Figure 1. Region-wide extent and subregions based on ecological subsections. 
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Table 1. Land cover (percent) within each fire model subregion. 

Land Cover Class Subregion 1a Subregion 1b Subregion 2 Subregion 3 

Open Water 0.58 0.74 1.17 2.65 

Perennial Ice/Snow  0 0.04 0.03 0 

Developed  3.94 4.06 1.17 1.17 

Barren 0.35 0.52 1.45 2.82 

Deciduous Forest 3.95 1.26 0.56 0.01 

Evergreen Forest  51.68 53.23 67.20 26.44 

Mixed Forest  7.51 4.64 0.35 0.03 

Shrub/Scrub  22.51 21.22 17.60 49.75 

Grassland/Herbaceous  7.54 10.09 8.05 9.11 

Pasture/Hay, Cultivated Crops 1.42 3.45 2.03 5.68 

Wetlands 0.52 0.75 0.39 2.34 

 

Fire and Environmental Predictor Data 

We derived the response variable--high-severity fire occurrence within large (>1000 ac) fire 
perimeters--using the Monitoring Trends in Burn Severity database (MTBS, USDA Forest 
Service/U.S. Geological Survey, https://mtbs.gov/). Fire perimeter and severity data were used 
from 1984 to 2010 because 1984 is the earliest year available from MTBS, and 2010 was the most 
recent year for available climate normals data, which were important to training statistical models.  

MTBS burn severity classes are derived from Landsat Thematic Mapper data by analyzing pre- and 
post-fire scenes to derive Differenced Normalized Burn Ratio (dNBR) data (Eidenshink et al. 2007). 
The continuous dNBR data are thresholded into burn severity classes (low, moderate, and high), 
with higher dNBR values correlated with higher burn severities. According to MTBS metadata, the 
burn severity classification thresholds are based on MTBS analysts’ interpretation of dNBR data and 
also informed by ancillary data and known relationships between dNBR values and composite burn 
index (CBI) ground plot data (https://www.mtbs.gov/mapping-methods). Tracy et al. (2018) 
describe field characteristics of MTBS high and low severity classes from Schwind (2008), where 
high burn severity in forests results in >75% mortality of overstory trees, with long lasting overstory 
tree damage, and forest recovery taking up to several decades. Low burn severity impacts are 

https://mtbs.gov/%E2%80%8B
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usually slight but may include up to 25% mortality in intermediate and large overstory trees, with 
recovery expected within 1-2 years. 

From 1984-2010, there were 505 fires greater than 1,000 acres (404.7 ha) in the study region, of 
which 435 contained some high-severity burn areas. We generated a random sample of points 
within fire perimeters using the method developed by Davis et al. (2017): the number of random 
points generated within each fire perimeter was equal to the square root of the perimeter area 
divided by 40. We also forced a minimum distance of 500 m between the random points (based on 
testing of best distance in the northern Sierra Nevada - Southern Cascades; Syphard et al. 2018) to 
increase spatial independence and reduce spatial autocorrelation and model performance inflation 
(Veloz 2009, Boria et al. 2014). This process resulted in establishing 507 total sample points from 
within high-severity fire patches within the Klamath study area. We reserved 20% of those points 
for model evaluation, leaving a total of 406 points for model training, with a range in sample sizes 
per region from 47 in region 1a to 170 in region 1b (Figure 2, Table 2)2. We also generated an equal 
number of test points per region within low-severity burn areas to serve as ‘absences’ to enable us 
to calculate accuracy metrics for the models. 

We assembled datasets of 30 potential predictor variables at 90-m resolution characterizing 
ignition sources (because a fire must occur before it can spread and develop into a large, high-
severity burn) and direct and indirect drivers of fire, such as climate, topography, land use, and 
vegetation (Table 3). This resolution was selected as a compromise between coarser resolution 
climate predictors (1-km) and finer resolution vegetation and topographic predictors (30-m). We 
did not explicitly include fire history data as a potential predictor, in part because this would create 
temporal mismatches with climate, vegetation, and other variables without deriving layers for each 
of 26 years for the 1984-2010 time period and creating appropriate variables, which was beyond 
the scope of this project. Appropriate use of fire history data as a predictor should be considered in 
future updates to these models. 

 

Table 2. Sample sizes of severe-fire training and testing points by model subregion2. 

 Region-wide Subregion 1a Subregion 1b Subregion 2 Subregion 3 

Training  406 47 170 115 73 

Testing 101 12 42 29 18 

  

                                                      
2  Maxent has been shown to perform well at sample sizes as small as 5-10 occurrence points 
(Hernandez et al. 2006; Pearson et al. 2007; Wisz et  al. 2008).  
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Figure 2. Sample points within high-severity portions of large (>1000 ac) fires from 1984-2010 used 
to train and test models. 
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Table 3. Potential predictor variables considered for inclusion in Klamath fire models. 

Type Predictor Time Period Source 

Climate July Maximum Vapor Pressure Deficit (VPD)  1981-2010 PRISM 

Climate Annual Maximum VPD 1981-2010 PRISM 

Climate Mean Temp Warmest Month (MWMT) 1981-2010 AdaptWest 

Climate Mean Temp Coldest Month (MTCM) 1981-2010 AdaptWest 

Climate Difference between MCMT and MWMT 1981-2010 AdaptWest 

Climate Mean Annual Precipitation 1981-2010 AdaptWest 

Climate Mean Summer Precipitation 1981-2010 AdaptWest 

Climate Precipitation as Snow 1981-2010 AdaptWest 

Climate Hargreave's Climatic Moisture Index 1981-2010 AdaptWest 

Climate Summer Heat Moisture Index 1981-2010 AdaptWest 

Climate Annual Heat Moisture Index 1981-2010 AdaptWest 

Climate Mean Annual Relative Humidity 1981-2010 AdaptWest 

Climate Actual Evapotranspiration 1981-2009 AdaptWest 

Climate Climatic Water Deficit 1981-2009 AdaptWest 

Climate Average Wind Power Density Class   NREL 

Land Use Distance to Primary/Secondary Roads  Open Street Map 

Land Use Distance to Major Roads   Open Street Map 

Land Use Distance to Major/Minor Roads   Open Street Map 

Land Use Distance to All Roads   Open Street Map 

Land Use Distance to Public Lands   PAD 

Land Use Housing Density 2010 TIGER  

Land Use Population Density 2010 TIGER  

Land Use Distance to Development 2010 NLCD Land Cover 

Topography Elevation   LANDFIRE 

Topography Slope   LANDFIRE 

Topography 

Solar Insolation Index ( 2 – 
(sin((slope/90)180))*(cos(22 – aspect) + 1)), 
Gustafson et al. 2003   CBI/LANDFIRE 

Topography 
Southwestness (transformed slope aspect 
(cos(aspect-255)), Franklin 2003   CBI/LANDFIRE 

Topography 

Topographic Heterogeneity (standard deviation 
elevation calculated for center cell and three cell 
(90m) radius immediately surrounding)    NatureServe 

Topography 

Topographic Wetness Index (function of slope 
and upstream catchment area, calculated with 
SAGA GIS module)   CBI/LANDFIRE 

Vegetation Vegetation Type 2010 NLCD Land Cover 
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Several variables were tested to capture ignition susceptibility, both anthropogenic and natural 

(lightning). Anthropogenic factors also influence the likelihood of a fire growing and developing 

into a large, high-severity fire, because fires closer to human population centers and roads are 

more likely to be detected and accessible for suppression and control. We tested housing density, 

population density, proximity to roads, proximity to development, and proximity to public land, 

which all have been found to be associated with human-caused fire ignitions and fire occurrence 

patterns (Parisien et al. 2012, Syphard and Keeley, 2015, Mann et al. 2016, Syphard et al. 2018, 

Syphard et al. 2019). We tested distance to several road classes: primary and secondary (highways, 

freeways, US routes, state routes); primary, secondary, and major (county routes, forest routes, 

National Scenic Byways); primary, secondary, major, and minor (residential, unclassified); and all 

roads (including very small roads such as service roads). For each subregion, we used only the best 

performing versions of road variables (see ‘Variable Selection’ under ‘Modeling Process’ below).  

While spatial data for lightning strikes are available, they are at too coarse in resolution to be 
useful in this application. Lightning-ignited fires have been shown to be correlated with terrain 
complexity (McRae 1992, Vazquez and Moreno 1998, Kilinc and Beringer 2007) and fuel moisture 
(Podur et al. 2003; Wotton and Martell 2005). Terrain and fuel moisture variables are described 
below. 

Climate and weather are regarded as controlling factors of fire occurrence, size, and severity 
(Westerling et al. 2006, Littell et al. 2009, Dennison et al. 2014, Harvey et al. 2016). Such factors 
influence whether an ignition may develop into a large, high-severity fire via effects on fuel 
moisture, structure, and abundance, as well as their real-time effects on fire behavior (e.g., due to 
wind). Several studies have demonstrated correlations between fire occurrence and size and 
summer temperatures and precipitation in the Pacific Northwest (McKenzie et al. 2004, Littell et al. 
2010, Davis et al. 2017). We therefore tested several temperature, moisture, and humidity-related 
variables as well as actual evapotranspiration, which is regarded as a proxy for the amount of fuels, 
and climatic water deficit, considered a proxy for fuel condition and moisture content (Table 3).  

Following Parisien et al. (2012), Davis et al. (2017), Tracy et al. (2018), and Syphard et al. (2018 and 
2019), we used long-term climate normals as references of relative conditions likely at each 
location. Climate normals represent the typical state based on averaged conditions from an area 
over decades of time (Davis et al. 2017). The use of long-term climate normals thus allows for 
projecting these models forward under different climate Coupled Model Intercomparison Project 
phase 5 (CMIP5) models, as downscaled projections are available as 30-year averages 
(https://adaptwest.databasin.org/pages/adaptwest-climatena). Although finer-scale, real-time 
weather conditions during a fire would better predict actual fire effects, such data are non-existent 
across the entire area of interest or extremely difficult to assemble, and the scope of this project 
was to predict broad, general patterns to inform management decisions (e.g., forest restoration 
treatments), not to predict behavior of individual fires. 

Vegetation is generally the fuel required for a fire to ignite and spread. Incorporating vegetation 
structure into a long-term fire model is difficult due to its highly dynamic nature relative to 
available vegetation data sets. We tested several such predictors, including live tree biomass, live 
tree density, canopy cover, stand density index, snag biomass, down wood biomass, canopy bulk 

https://adaptwest.databasin.org/pages/adaptwest-climatena
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density, and canopy base height. The response plots from models using these variables were 
counterintuitive and suggested there were frequent temporal mismatches between time of fire 
and time of vegetation mapping (e.g., post-fire vegetation structure variables often did not reflect 
vegetation structure at the time of the fire). This would thwart our intent of mapping how pre-fire 
conditions affect severe fire risk. Therefore, similar to Bar Massada et al. (2012) and Syphard et al. 
(2018), we needed to limit our vegetation predictors to coarse vegetation type, which is less 
dynamic and has been shown to be an important predictor of fire severity in the Klamath 
Mountains (Estes et al. 2017) and across the western U.S. (Liu and Wimberly 2015). 

Terrain is known to have a direct influence on fire behavior and to indirectly influence fuel 
flammability (Syphard et al. 2019). Estes et al. (2017) found topographic complexity most strongly 
influenced fire severity in the Klamath Mountains. Southern aspect and elevation were found by 
Alexander et al. (2006) to be correlated with fire severity for two fires in the Klamath Siskiyou 
region. We therefore tested several terrain variables relating to topographic complexity, aspect, 
and exposure, including elevation, slope, solar insolation index, southwestness index, topographic 
wetness index (a proxy for soil moisture), and topographic heterogeneity (Table 3). 

Modeling Process 

We developed statistical models of large, high-severity fire risk using MaxEnt (distribution model 
for presence-only data; Version 3.3.3k, Phillips et al. 2006) across the entire Klamath area and 
separately by the four subregions.  MaxEnt compares occurrence points with a sample of 
background points to create a prediction of relative risk. Similar methods have been successfully 
used in a range of wildfire analyses (Bar-Massada et al. 2012, Parisien et al. 2016, Davis et al. 2017, 
Syphard et al. 2018, Tracy et al. 2018, Syphard et al. 2019).   

Our modeling process consisted of 3 main steps: (1) variable selection (testing predictors 
independently and evaluating predictor collinearity), (2) multivariate model creation and variable 
pruning to create a parsimonious predictive model, and (3) model tuning to control for overfitting. 
Our models were run in MaxEnt using the default parameters, including model clamping, with the 
following exceptions: linear, quadratic, and product feature types only, and 10-fold cross-validated 
replication. Linear, quadratic, and product feature types are preferred to ensure smoother 
response curves (Santos et al. 2017) and because responses to ecological gradients are frequently 
nonlinear and interactions among predictors are common. Clamping restricts MaxEnt model 
extrapolations according to the limits of predictor variables used to train the model and is 
important when models are projected onto future conditions or new geographic areas, although 
this should have minimal impacts in this particular application. 
 
Before using all candidate predictors in a full multivariate model, we conducted a correlation 
analysis on the predictors using ENMTools (version 1.3, Warren et al. 2010). To create more 
parsimonious and interpretable results (Merow et al. 2013), we excluded correlated variables (|r| > 
0.7, see Appendix 1 for correlation matrix) by selecting the one with the highest univariate 10-fold 
cross-validated mean AUC (Area Under the Receiver Operating Characteristic (ROC) curve, a 
threshold-independent assessment of model discriminatory ability, Fielding and Bell 1997). 
Remaining predictors were carried forward to a full model.  
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We pruned the resulting full (multivariate) models in an iterative, stepwise process to increase 
model parsimony by removing the variable contributing the least information to model fit (highest 
mean training gain without the variable) to decrease model complexity and increase performance 
(Warren et al. 2014, Yiwen et al. 2016). The model was run again with the remaining predictors. 
This was repeated until only one variable remained. From the resulting model set, we selected the 
model with the fewest predictors having a mean training gain not significantly different than the 
full model. Significance was defined as lack of overlap of 95% confidence intervals for training gain 
means (calculated in R version 3.5.1; R Core Team 2013). While selected models may include 
predictors that seemingly have low importance, dropping these predictors results in a statistically 
significant decrease in model performance.   

To prevent model overfitting and reduce complexity, we next tuned our selected model by varying 
MaxEnt’s regularization multiplier parameter to constrain model complexity (Anderson and 
Gonzalez 2011, Merow et al. 2013, Radosavljevic and Anderson 2014, Warren et al. 2014). We 
varied the parameter from 0 to 5 in increments of 0.5 (default = 1), and used ENMTools ‘Model 
Selection’ function to calculate AICc (Akaike information criterion corrected for small sample sizes) 
for each (Warren and Seifert 2011)3. For this analysis, MaxEnt was run with the variables from the 
selected pruned model, but using the ‘raw’ output and no replicates (required for model selection 
with ENMTools). We selected as the best model the one with the lowest AICc. AICc provides a 
quantitative measure balancing model complexity and goodness-of-fit without requiring a large 
independent evaluation dataset (Galante et al. 2018). The model with the lowest AICc is regarded 
as the best model tested, but all models with AICc values within 2 AICc units (dAICc) are considered 
to be supported and may be averaged using AICc weights. Rather than averaging models that vary 
only in terms of their regularization parameter if dAICc < 2, we instead opted for parsimony by 
simply selecting the regularization parameter with the minimum AICc. 

We then ran MaxEnt Klamath-wide and for each subregion with the logistic output option and 10-
fold cross validation with the selected regularization parameters to get final output grids using our 
multivariate tuned models. Subregional model outputs were mosaicked together to create a 
continuous region-wide grid.  

Model Evaluation 

We evaluated model performance using both threshold-dependent and threshold-independent 
methods. For threshold-dependent, we used the equal training sensitivity and specificity (ESS) 
metric, which has been shown to be robust at balancing overestimates vs underestimates in 
MaxEnt predictions (Cao et al. 2013). We used the ESS thresholds provided by MaxEnt (Table 4) to 
reclassify our continuous model outputs into binary ‘high risk’ (>ESS) and ‘low risk’ (< ESS) grids. 
These were intersected with the reserved high-severity and low-severity test points to calculate 
model sensitivity (True Positive /(True Positive + False Negative)), specificity (True Negative /(False 
Positive + True Negative)), and accuracy ((True Positive + True Negative) / (Positive  + Negative)). 
We also calculated the percent of high-severity and low-severity pixels overlapping the binary 
outputs.  

                                                      
3 We did this because Maxent does not provide this information. 
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While our models were derived using fire data from 1984 to 2010 to match the temporal extent of 
the climate data, additional data for independent model evaluation are available from 2011 to 
2015. We calculated the percent of 2011 to 2015 high-severity and low-severity pixels that were 
correctly classified by overlaying them with the thresholded model outputs.  

For threshold-independent evaluation metrics, we calculated the point-biserial correlation 
(Pearson’s product-moment correlation) between the continuous model outputs and the high- and 
low-severity test points (Elith et al. 2006). We also tested for differences in the mean fire risk 
values between low- and high-severity test point groups using a Welch two sample t-test. 

Mean 10% test omission rates and difference between testing and training AUC values (AUCdiff) 
were examined to evaluate potential model overfitting. We also report test AUC values, but this 
model evaluation statistic has been shown to be sensitive to sample size (Lobo et al. 2007), making 
comparisons between models using different occurrence data difficult. 

 

Table 4. Equal training sensitivity and specificity (ESS) thresholds used to subdivide the MaxEnt 
model continuous value outputs into high risk vs low risk areas for large, severe wildfire for 
purposes of model testing.  

Region- 
wide Subregion 1a Subregion 1b Subregion 2 Subregion 3 

0.414 0.395 0.393 0.315 0.284 

 

Results 

These results represent outputs from statistical models based on available landscape-scale GIS 
variables that cannot account for real-time fire conditions. They describe broad geographic 
patterns in landscape fire risk across the entire Klamath region and broken down by subregions. 
The region-wide model balances statistical influences on fire severity across very broad ecological 
and climatic gradients, thus revealing broad patterns which may be interesting but not necessarily 
very useful for on-ground management decisions. Subregional models are more discriminating of 
conditions affecting fire risk over a narrower range of environmental conditions (e.g., within a 
hotter-drier landscape or within a cooler-moister landscape), and thus provide more pertinent 
information for management decisions. All model outputs should be considered hypotheses to be 
refined with additional information. 

High-severity Fire Risk Models 

Topographic heterogeneity (“ruggedness”), annual heat moisture index, and vegetation class were 
the predominant predictive variables in the Klamath-wide model. Projected fire risk varies greatly 
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across the Klamath region, but is concentrated in the more westerly and heavily forested 
subregions 1a and 1b, with more scattered areas of high risk in the more arid shrub-dominated east 
subregions 2 and 3 (Figure 3 and Figure 4, left). Large areas of severe fire risk are predicted within 
the interior Northern California Coast Ranges and the Klamath Mountains, with smaller 
concentrations in the West Cascades, Sierra Nevada Foothills, and Sierra Nevada and the Warner 
Mountains.  

The results suggest that, very broadly across this diverse region, fire risk is generally associated 
with rugged terrain and relatively warm-dry conditions--but the patterns are complicated by 
complex interactions amongst variables across this very broad eco-climatic gradient. For example, 
the predominant fuel is conifers in some high-fire areas (especially in moister coastal subregions) 
and shrubs in other areas (especially in drier inland areas). Given that forest and shrubland 
vegetation communities reflect the environmental conditions supporting them, and that these 
same environmental conditions affect fire severity via other means--e.g, real-time weather and fuel 
conditions--these broad patterns may obscure finer-scale insights. 

Subregional models reveal finer-scale variation in how fire risks vary with landscape variables. In 
subregion 1, areas of high risk are concentrated in the Eastern Franciscan ecoregional subsection 
(Figure 3 and Figure 4). The Rattlesnake Creek, Trinity Mountain-Hayfork, North Trinity Mountain, 
Eastern Klamath Mountains, Upper Salmon Mountains, Siskiyou Serpentine, and Siskiyou 
Mountains ecoregional subsections within the Klamath Mountains contain the largest 
concentration of high risk areas within subregion 1b (Figure 3 and Figure 4). These areas support 
dense forests in somewhat warmer, drier conditions than more coastal forests. 

Within subregion 2, high fire risk is concentrated in the south in the Sierra Nevada (Granitic and 
Metamorphic Foothills, Diamond Mountains-Crystal Peak, Fredonyer Butte-Grizzly Peak, and 
Greenville-Graeagle ecoregional subsections), portions of the Shingletown-Paradise ecoregional 
subsection within the southern Cascades, and in the Western Cascades Highland Forest ecoregional 
subsection (Figure 3 and Figure 4).  

Predicted high fire risk in subregion 3 is concentrated in dry shrub and conifer vegetation in mid-
elevation areas of the Modoc Plateau (Fremont Pine-Fir Forest, Warner Mountains, Mountains and 
Valleys, Likely Mountain, Big Valley Mountains, and Eagle Lake-Observation Peak ecoregional 
subsections) and portions of the Northwestern Nevada Ranges and the Eastern Cascades’ Pumice 
Plateau Forest (Figure 3 and Figure 4). 
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Figure 3. Modeled large high-severity fire risk using a region-wide model (left) and four subregional 
models (right). 

 

Variables selected in final models differed among subregions, as expected.  Nevertheless, each 
model included at least one each of a climate, topographic, development, and vegetation variable. 
Differences in variable importance by subregion suggest that fire-environment relationships are 
complex and varied across the broad and ecologically diverse Klamath area (see Appendix 2 for 
variable response plots).  

Vegetation type was the only predictor common to all models, with its importance ranging from 3.4 
in subregion 1a to 27.1 in subregion 2 (Table 5). The model for subregion 1a is largely driven by 
distance to public lands, while in subregion 1b, distance to public lands and elevation are nearly 
equal in greatest importance. In both subregions, large, high-severity fire risk is concentrated closer 
to public lands than private lands, which probably reflects differences in vegetation and fire-
fighting actions between public and private lands. Although fire ignitions are concentrated near 
development and roads, fires on wild public lands are more likely to become large and severe due 
to rugged terrain, vegetation characteristics, and fire-fighting priorities and access. 



Modeling the Potential for Large High-Severity Fires in the Klamath Basin Region  
of California and Oregon and Their Potential Impacts on Marten and Fisher 

Conservation Biology Institute, September 2019 

 

Page 16 of 54 

 

Figure 4. Modeled large high-severity fire risk using a region-wide model (left) and subregional 
models (right), classified as ‘at risk’ using equal sensitivity and specificity thresholds.  

 

Mapped outputs of the Klamath-wide model and the subregional model mosaics differed (Figure 5) 
although there was just a 5% difference in the total area predicted at risk of severe fire (25% by 
Klamath-wide and 20% by the subregional models, Figure 5). The thresholded models agree across 
80% of the overall region, with the Klamath-wide model predicting about 12% of the region at risk 
and the combined subregional models predicting about 8% of the overall region (Figure 5). 
Comparing the orange and yellow areas on Figure 5, it appears the subregional models are more 
discriminating of fire risk in general, and that the region-wide model may especially under-predict 
the extent of risk in subregion 3. 
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Table 5. Predictor importance determined by MaxEnt for regional and subregional fire risk models. 

Predictor 
Region- 
wide 

Subregion 
1a 

Subregion 
1b 

Subregion 
2 

Subregion 
3 

Vegetation Type 21.9 3.4 13.5 27.1 9.0 

Distance to Public Lands 9.5 49.1 23.0 2.6  

Distance to Development 4.4  7.6 2.8 20.7 

Distance to Primary/Secondary Roads  10.4  16.5 11.2 

Distance to Major and Minor Roads   5.9   

Mean Annual Precipitation  3.1 3.6 15.3  

Difference between MCMT and MWMT 
(measure of continentality) 9.5  

 
7.6 10.7 

Mean Annual Relative Humidity   3.6  13.2 

Annual Heat Moisture Index 23    7.5 

Summer Heat Moisture Index  11.0    

Mean Temp Warmest Month (MWMT)  4.2    

Wind   1.9    

Annual Maximum Vapor Pressure Deficit    6.7   

Precipitation as Snow     18.0 

Mean Temp Coldest Month (MCMT)    6.8  

Topographic Heterogeneity 31.6  11.1 14.1 5.4 

Southwestness   2.6 1.2 1.4 

Elevation  17 22.5  2 

Insolation Index    6 0.9 
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Figure 5. Agreement between region-wide and subregional fire risk models. Red indicates high risk 
and green low risk predicted by both regional and subregional models; orange indicates high risk 
predicted by the region-wide model only; and yellow indicates high risk by subregional models 
only.  
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Model average test AUC values, a measure of model discrimination, were good across all selected 
models (Araujo et al. 2005), ranging from 0.8 for the region-wide model to 0.87 in subregions 1a 
and 3 (Table 6). We repeat that fire modeling is inherently uncertain given the stochastic nature of 
fire and how it is affected by factors not yet mapped and available for statistical analyses, and that 
these results must be interpreted with due caution.  

Mean 10% omission rates ranged from 0.10 (Klamath-wide model) to 0.16 in subregion 1b and 
AUCdiff values ranged from 0.03 (Klamath-wide model) to 0.07 in subregion 1a, suggesting no model 
suffered from overfitting. The combined subregional models outperformed the Klamath-wide 
model by most evaluation metrics, as expected. The Klamath-wide model had slightly lower overall 
accuracy and lower correct classification rates of low-severity fire, but higher classification rates for 
high-severity fire than the combined subregional models (Table 6).  

 

Table 6. Evaluation metrics for region-wide and subregional models. 

Metric 
Region-
wide 

Subregional 
combined 

Region 
1a 

Region 
1b 

Region 2 
Region 
3 

Mean Test AUC 0.8 - 0.87 0.81 0.83 0.87 

Mean AUCdiff 0.03 - 0.07 0.06 0.05 0.04 

Mean 10% Test Omission 0.1 - 0.12 0.16 0.14 0.12 

Sensitivity 0.69 0.65 0.67 0.6 0.72 0.67 

Specificity 0.5 0.60 0.67 0.43 0.69 0.68 

Accuracy 0.59 0.63 0.67 0.51 0.71 0.68 

Pearson’s product-moment 
correlation (p-value) 

0.229 
(0.001) 

0.306 
(0.00001) 

0.172 
(0.420) 

0.093 
(0.398) 

0.526 
(0.00002) 

0.469 
(0.004) 

t (p-value) 
3.329 
(0.001) 

4.543 
(0.00001) 

0.821 
(0.422) 

0.850 
(0.398) 

4.624 
(0.00003) 

3.094 
(0.004) 

Classification High Severity, 
1984-2010 

69.2 67.6 76.3 58.3 74.6 80.3 

Classification Low Severity, 
1984-2010 

44.5 55.8 43.8 50.1 62.2 65.6 

Classification High Severity, 
2011-2015 

56 36.6 26.2 43.2 23.5 36.6 

Classification Low Severity, 
2011-2015 

51 70.4 83.6 62.8 72.4 75.5 

 

Model sensitivity (proportion of high-severity points correctly classified) ranged from 0.6 
(subregion 1b) to 0.72 (subregion 2), while specificity (proportion of low-severity points correctly 
classified) was highest in subregion 1a (0.7) and lowest in subregion 1b (0.43; Table 6). Overall 
accuracy was highest in subregion 2 (0.71) and lowest in subregion 1b (0.51).  Low evaluation 
metrics are to be expected given that these models do not account for real-time fire conditions and 
fire-fighting effects. 
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All models performed better at capturing high-severity pixels than at correctly classifying low-
severity pixels (Figure 6, Table 6), which is not surprising given that the statistical models were 
trained to predict high-, not low-, severity fire risk using high-fire sample points. The percent of 
high-severity pixels correctly classified ranged from a low of 58.3 in subregion 1b to a high of 80.3 
in subregion 3. The percent of low-severity pixels correctly classified was highest in subregion 3 and 
lowest in subregion 1a.  

All models performed poorly at correctly classifying high-severity fires that occurred after the time 
period of the occurrence data used to train them (Figure 7, Table 6). Correct classification of high-
severity fires from 2011 to 2015 was highest in the region-wide model (56.0) and lowest in 
subregion 1a (26.2). Low-severity fire classification rates from 2011 to 2015 were much higher, 
ranging from a low of 51.0 for the Klamath-wide model to 83.6 in subregion 1a. These results could 
reflect effects of the 2011-16 drought on fire conditions and again re-emphasize the importance of 
matching variables in time as well as space to understand changing fire patterns. 

Threshold-independent evaluation metrics showed significant differences in modeled risk values 
between high and low severity test points in both the region-wide and combined sub-regional 
models (correlations were 0.306 for combined sub-regional models and 0.229 for region-wide 
model; t-tests for differences in mean risk values between groups were significant; Table 6).  

Our results suggest that fire patterns and drivers of large, high-severity fire in the Klamath region 
vary substantially across this geographically diverse area. There was considerable agreement 
between the region-wide and subregional models, and neither output was superior across all 
evaluation metrics used. The region-wide model is better at capturing high-severity fires during 
both time periods tested, while the subregional models are better at classifying low-severity fires 
during both time periods. Subregional models likely better reflect finer-scale fire-environment 
relationships compared to the Klamath-wide model, and therefore may better inform management 
decisions. We recommend using the continuous rather than thresholded model outputs to better 
demonstrate the full range of risk across the landscape, and of course considering other 
information bearing on fire risks when applying these results. 
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Figure 6. Overlap between modeled large, high-severity fire risk (gray) using a region-wide model 
(left) and subregional models (right), classified as ‘at risk’ using the equal sensitivity and specificity 
threshold, and actual mapped low (green) and high (red) burn severity areas, 1984-2010 (MTBS, 
USDA Forest Service/U.S. Geological Survey, https://mtbs.gov/). 
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Figure 7. Overlap between modeled large, high-severity fire risk (grey) using a region-wide model 
(left) and subregional models (right), classified as ‘at risk’ using equal sensitivity and specificity 
thresholds, and actual mapped low (green) and high (red) burn severity areas, 2011-2015 (MTBS, 
USDA Forest Service/U.S. Geological Survey, https://mtbs.gov/). 

Potential Impacts of Severe Fire on Fisher and Marten Core and Linkage Habitats 

We overlayed results of the subregional fire risk model with fisher and marten cores and corridors 
delineated by Spencer et al. (2019; USFWS Cooperative Agreement F17AC00856) to evaluate where 
high-priority fisher and marten habitat areas may be at greatest risk of loss to fires. Results are 
shown in Figures 8 and 9, and summary statistics are presented in Table 7. The results suggest that 
important core and linkage habitats for fisher are at risk of at least temporary loss due to severe 
fires, especially in the Klamath and Coast Ranges and the northern Sierra Nevada-Southern Cascade 
regions of northern California. Marten core habitat areas appear to have lesser risk of loss, but 
some tenuous connectivity areas appear to be at high risk, especially between the Lassen and 
Shasta regions and the Warner Mountains and Klamath region. These results should be considered 
when prioritizing management interventions intended to reduce fire risks in forested areas.
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Figure 8. High-severity fire risk overlayed with fisher core and linkage habitats.
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Figure 9. High-severity fire risk overlayed with marten cores and linkages. 
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Table 7. Correspondence between high fire risk areas and fisher and marten core and linkage 
habitats in the Klamath study region. 

Habitat Component Acres at Risk % at Risk 

Fisher Cores 1,340,506 24% 

Fisher Linkages 1,031,907 24% 

Marten Cores 484,272 21% 

Marten Linkages 1,042,693 30% 
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Data Products 
Results of this project are available as maps and data that can be viewed and downloaded from 
Data Basin. We recommend the user go directly to the Data Basin gallery linked below, or use the 
index below to access individual products. 
 
Klamath Large, High-severity Fire Risk Modeling Gallery 

Fire Risk Model Outputs 
1. Areas at Risk of Large High-severity Fire, Mosaic of Subregional Models, Greater Klamath 

Region, OR and CA 
2. Areas at Risk of Large High-severity Fire, Region-wide Model, Greater Klamath Region, OR 

and CA 
3. Large High-severity Fire Risk, Region-wide Model, Greater Klamath Region, OR and CA 
4. Large High-severity Fire Risk, Mosaic of Subregional Models, Greater Klamath Region, OR 

and CA 

 
Input Data for Fire Risk Model 

1. Klamath High-severity Fire Points, Region-wide Model, 1984-2010 
2. Klamath High-severity Fire Points, Subregional Models, 1984-2010 
3. Predictors for Klamath Region-wide Large, High-severity Fire Risk Model 
4. Predictors for Klamath Large, High-severity Fire Risk Model (Subregion 1a) 
5. Predictors for Klamath Large High-severity Fire Risk Model (Subregion 1b, Part 1) 
6. Predictors for Klamath Large High-severity Fire Risk Model (Subregion 1b, Part 2) 
7. Predictors for Klamath Large High-severity Fire Risk Model (Subregion 2, Part 1) 
8. Predictors for Klamath Large High-severity Fire Risk Model (Subregion 2, Part 2) 
9. Predictors for Klamath Large High-severity Fire Risk Model (Subregion 3, Part 2) 
10. Predictors for Klamath Large High-severity Fire Risk Model (Subregion 3, Part 1) 
11. Subregions for Klamath Large, High-severity Fire Risk Modeling 

 
Overlay Analysis for Fisher and Martin 

1. Fisher Cores and Linkages with High Fire Risk, Klamath 
2. Marten Cores and Linkages with High Fire Risk, Klamath 

  

https://databasin.org/galleries/2fb0b0fc7772473e9752c89a63887c42
https://databasin.org/datasets/ad232cb98e3949b491fe544ceed12f6b
https://databasin.org/datasets/ad232cb98e3949b491fe544ceed12f6b
https://databasin.org/datasets/46aa640ae96f4195b7d9235d16816416
https://databasin.org/datasets/46aa640ae96f4195b7d9235d16816416
https://databasin.org/datasets/6e4725a309154b38aaf8043bb1d68cc6
https://databasin.org/datasets/6adcddb678e94916bb3a1398f6674941
https://databasin.org/datasets/6adcddb678e94916bb3a1398f6674941
https://databasin.org/datasets/c4b6063b6d2749ffbd316ea36599964f
https://databasin.org/datasets/7bd6126d4baa4beaa8b0196e1a483a76
https://databasin.org/datasets/e8e7fcb68a5443ba89929ab920c50fde
https://databasin.org/datasets/7e1b829c3bdd44a3a5980ca2d5eac066
https://databasin.org/datasets/c45bf4ca978e4a7b9d09a59cf1ab9bb9
https://databasin.org/datasets/64df435029b84b6ea5f1c8a4f8bf18ab
https://databasin.org/datasets/aeb73750f841476fa906b663d5953922
https://databasin.org/datasets/6c1a96b52c6d49d2a3002db93072bd4d
https://databasin.org/datasets/e4b33bd7bf5d4d4b827337328e05113d
https://databasin.org/datasets/a847c12098a84169bd80f3a2829ba0c1
https://databasin.org/datasets/5d9956c0d4324ad591614573232f4f6a
https://databasin.org/datasets/fc6f39e0e78549d3a3ff6695c2eae1d2
https://databasin.org/datasets/8a965e3ed48b44159e6cc35c2d9c8810
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Appendices 

Appendix 1. Correlation matrix of predictors across entire study area
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Appendix 2. Model response plots 

A. Region-wide model  
a. Univariate plots 

 

 

 

b. Marginal plots 
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B. Subregion 1a model 
a. Univariate plots 
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b. Marginal plots 
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C. Subregion 1b model 
a. Univariate plots 
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b. Marginal plots 
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D. Subregion 2 model 
a. Univariate plots 
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b. Marginal plots 
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E. Subregion 3 model 
a. Univariate plots 
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b. Marginal plots 
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Appendix 3. Black and white versions of figures. 

Figure 1.  
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Figure 2.  
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Figure 3. 

 

  



Modeling the Potential for Large High-Severity Fires in the Klamath Basin Region  
of California and Oregon and Their Potential Impacts on Marten and Fisher 

Conservation Biology Institute, September 2019 

 

Page 49 of 54 

Figure 4. 
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Figure 5.  
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9.  

 


