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Prediction maps produced by species distribution models (SDMs) influence decision-making in resource management or
designation of land in conservation planning. Many studies have compared the prediction accuracy of different SDM
modeling methods, but few have quantified the similarity among prediction maps. There has also been little systematic
exploration of how the relative importance of different predictor variables varies among model types and affects map
similarity. Our objective was to expand the evaluation of SDM performance for 45 plant species in southern California to
better understand how map predictions vary among model types, and to explain what factors may affect spatial
correspondence, including the selection and relative importance of different environmental variables. Four types of
models were tested. Correlation among maps was highest between generalized linear models (GLMs) and generalized
additive models (GAMs) and lowest between classification trees and GAMs or GLMs. Correlation between Random
Forests (RFs) and GAMs was the same as between RFs and classification trees. Spatial correspondence among maps was
influenced the most by model prediction accuracy (AUC) and species prevalence; map correspondence was highest when
accuracy was high and prevalence was intermediate (average prevalence for all species was 0.124). Species functional type
and the selection of climate variables also influenced map correspondence. For most (but not all) species, climate variables
were more important than terrain or soil in predicting their distributions. Environmental variable selection varied
according to modeling method, but the largest differences were between RFs and GLMs or GAMs. Although prediction
accuracy was equal for GLMs, GAMs, and RFs, the differences in spatial predictions suggest that it may be important to
evaluate the results of more than one model to estimate the range of spatial uncertainty before making planning decisions
based on map outputs. This may be particularly important if models have low accuracy or if species prevalence is not
intermediate.

Spatial prediction of species’ geographic distributions has
become a fundamental component of conservation plan-
ning, resource management, and environmental decision-
making. Therefore, methodological issues related to species
distribution models (SDMs) have been the focus of much
discussion in the recent scientific literature. SDMs are
quantitative, predictive models of the species�environment
relationship that correlate observations of species occurrence
or abundance with mapped environmental variables to
make spatial predictions of habitat suitability or species
occurrence (Franklin 1995, Guisan and Zimmermann
2000, Scott et al. 2002, Guisan et al. 2006). The methods
are based on the assumption that species’ distributions are
correlated with environmental gradients represented by
landscape variables that are distally or proximally related
to their physiological tolerances or resource requirements,
and thus, their realized niches (Austin 2002).

In recent years, a growing number of modeling methods
has been applied to improve the performance and ecological
validity of SDM, and the different approaches vary in terms
of their complexity, assumptions, data requirements, and
ease of use. The recent SDM literature has emphasized
comparison of these different model types to better under-
stand their relative differences in performance (Bio et al.
1998, Franklin 1998, Moisen and Frescino 2002, Segurado
and Araújo 2004, Elith et al. 2006, Maggini et al. 2006,
Guisan et al. 2007). The majority of these comparisons
have focused on prediction accuracy as a measure of model
performance in which one or more standard metrics are
applied. For categorical prediction accuracy (‘‘threshold-
dependent’’), common metrics include Kappa, Sensitivity,
or Specificity. Alternatively, the area under the curve (AUC)
of receiver-operating characteristic (ROC) plots (Fielding
and Bell 1997) is a particularly useful metric for model
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comparison because it avoids the need to choose a threshold
probability that separates ‘‘suitable’’ from ‘‘unsuitable’’ (or
presence from absence) (i.e. it is ‘‘threshold-independent’’).
The AUC is also widely used because it describes the overall
ability of the model to discriminate between two cases (but
see Lobo et al. 2008).

While metrics like AUC are important components of
model performance evaluation, there has been less emphasis
in the literature on other methods of comparing and
evaluating models. In particular, few studies have system-
atically explored the similarity among maps predicted by
different model types. Yet, in many applications, the maps
produced by SDMs are the key outputs that influence
decision-making or designation of land, for example, for
nature reserves (Mladenoff et al. 1995, Johnson et al. 2004).
Therefore, measuring the amount of map overlap among
predictions may provide important information about the
strengths and limitations of different model types that may
not be apparent from global measures such as AUC. For
example, models that demonstrate equally high accuracy
when assessed with test data could yield incongruent maps
because the models use different assumptions, algorithms,
and parameterizations.

Some studies have qualitatively compared predictive
distribution maps resulting from different modeling meth-
ods and discussed their differences in the context of extent-
based (non-spatial) accuracy measures, e.g. the tendency of
some methods to over-predict or under-predict distribu-
tions (Loiselle et al. 2003, Elith et al. 2006). Other studies
have shown large variation among projections of species’
future ranges under various climate change scenarios from
different models (Thuiller et al. 2004a, b, Araújo et al.
2005a, b, Araújo and New 2007), or for invasive species
introduced into new regions (Crossman and Bass 2008,
Kelly et al. 2008), and these studies emphasized ensemble
forecasting (i.e. combining predictions across multiple
models) to address the spatial uncertainty associated with
these projections.

The studies that have quantitatively compared prediction
maps from different models have shown that spatial
predictions may vary considerably depending on the
method and other modeling decisions. Prasad et al.
(2006) concluded that maps produced using ensemble
statistical learning methods (e.g. Random Forests), were
more similar to each other (and more realistic) than to those
produced using single models. In another study, global
statistical models, such as generalized linear models (GLMs)
and generalized additive models (GAMs), produced maps
that were more similar to each other than they were to local
models, that is, statistical methods that allow model
parameters to vary spatially (Osborne and Suarez-Seoane
2007).

Although no studies have explicitly focused on explain-
ing spatial divergence in map predictions, Johnson and
Gillingham (2005) suggested that discrepancies in predicted
maps from four different methods may have been due to
differences in the predictor variable sets used to build the
models. Likewise, Thuiller et al. (2004a, b) proposed that
discrepancies in model projections may be related to
differences in the ways that model types make predictions
under different environmental conditions. Hernandez et al.
(2006) also showed that the spatial prediction of suitable

habitat varied depending on the number of observations
available to train the model.

As with comparison of prediction maps, there has been
little systematic exploration of environmental variable
selection, and the relative importance of different predictor
variables, among model types. The selection of environ-
mental predictor variables in SDM is often a function of the
scale of the analysis; but in general, the predictors describing
the physical environment often fall into three classes:
1) climate, 2) terrain, and/or 3) substrate or landform
(Franklin 1995, Mackey and Lindenmayer 2001). The
predictive power of SDMs at broad scales may not be
substantially improved by including variables other than
climate (Thuiller et al. 2004a, b), but terrain and geological
variables related to direct and resource gradients, may be
more important at finer, landscape scales (Franklin 1995);
in many cases, a combination of climate and edaphic factors
may produce the best models (Iverson and Prasad 1998).
One recent meta-analysis found that those models that
included environmental predictors from multiple, hierarch-
ical scales yielded the most accurate predictions (Meyer and
Thuiller 2006).

While many individual SDM studies describe the
correlations between predictors and species occurrence, i.e.
the relative importance of different predictors, there is still
little in the way of general guidelines about the relative
importance of, e.g. climate, terrain and edaphic variables
within and among model types and for different taxa.
Peterson and Nakazawa (2008) showed that, when using
one model type (GARP), spatial predictions of native and
introduced distributions of fire ants were sensitive to the
environmental data sets used to develop the models.
Considering this potential influence that different environ-
mental data sets may have on spatial predictions, the
authors called for further research on the topic.

Our objective in this study was to expand the evaluation
of SDM model performance to better understand how
mapped predictions may vary among model types, and to
explain what factors may affect spatial correspondence.
Furthermore, we evaluated the selection and relative
importance of different environmental variables used to
predict plant species distribution for 45 species in southern
California using four types of models. We asked these
questions.

1) Do different SDM modeling methods produce similar
spatial predictions?

We expected map correlation to be highest between
similar model types, e.g. between those that used
supervised, machine learning methods (classification
trees, CT, and Random Forests, RF) and those model
types that are extensions of linear multiple regression
models (GLMs and GAMs).

2) How does the correlation of spatial predictions from
different models vary in relation to prediction accuracy,
species’ prevalence, species’ functional type, or type of
environmental variables in the model?

We expected spatial correspondence among maps to
be highest when models had greater prediction accuracy.
We also expected species that occurred over smaller
extents on the map to have better map correspondence
because prevalence (the proportion of species’ presences
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in the training data) may be related to habitat specificity
(Stockwell and Peterson 2002, Segurado and Araújo
2004, Luoto et al. 2005, Elith et al. 2006, McPherson
and Jetz 2007), which could constrain the potential area
to be predicted as suitable habitat. Because the realized
niche is influenced by different spatial factors for
different functional types (Syphard and Franklin in
press), we also expected map correlation to vary among
functional types. Finally, we expected higher map
correspondence to occur when climate variables were
selected as important because climate varies more slowly
over space than terrain or soil variables and will tend to
delimit the general outline of the species range (rather
than delineate occupied habitat within that range).

3) Do different modeling methods select for different types
of environmental variables?

Overall, we expected climate to be more important
than terrain and soil for all methods because climate
directly fulfills plant species’ requirements for or toler-
ance to heat, moisture, and light regimes. We also
expected RF and CTs to select soil order (a categorical
variable) more than GLMs or GAMs because categorical
predictors are well handled by decision-tree methods
(Breiman et al. 1984).

Methods

The species’ distribution models examined in this study
were developed as part of a larger project and the study area,
species data, environmental data, and modeling methods
are described in detail elsewhere (Syphard and Franklin in
press). They will be summarized briefly here.

Study area and species data

We compiled species data for 45 plant species that
dominate the foothills and coastal plain of southern
California. These species are typical of the Chaparral and
Sage Scrub shrubland plant communities (Westman 1981,
Schoenherr 1992, Hickman 1993, Keeley 2000) and
represent a range of plant functional types. Species
occurrence locations (presence-absence) were acquired for
1471 southern California shrubland locations (Taylor
2004) from a database (Vegetation Type Maps (VTM),

/<http://vtm.berkeley.edu//>) of vegetation plots surveyed
in the 1930s (Wieslander 1935, Kelly et al. 2005, Barbour
et al. 2007). These species were found in at least 30
plots (prevalence�0.02). Average prevalence was 0.124
(0.03�0.53).

Environmental predictors

We used eight climate, terrain, and soil variables as
predictors. Three climate variables included mean annual
precipitation, mean minimum January temperature, and
mean maximum July temperature interpolated to 1-km
grids from 1966 to 1995 climate station data (Franklin
et al. 2001). Four terrain variables included winter and
summer solar radiation, Topographic Moisture Index

(TMI), and slope. Terrain-distributed solar radiation
(Dubayah and Rich 1995) was modeled from U.S.
Geological Survey 30-m resolution digital elevation model
(DEMs) using the Solar Analyst 1.0 extension for ArcView
(ESRI, Redlands, CA, USA) Geographic Information
System (GIS). Daily insolation was calculated for two
single days, the summer and winter solstice (using site
latitude of 338N, sky size of 200, and 0.2 clear sky
irradiance) and used to represent the seasonal extremes of
radiation on the landscape to yield one summer and one
winter radiation variable. The TMI represents relative soil
moisture availability based on upslope catchment area and
slope, which were derived from the DEM (Moore et al.
1991, Wilson and Gallant 2000). For the soil variable, we
created a grid of soil order, a categorical variable, using the
California State Soil Geographic Database (STATSGO).

Species’ distribution models

We developed four models for each species using the
following methods: generalized linear models (GLMs),
generalized additive models (GAMs), classification trees
(CTs), and Random Forests (RFs). GLMs in the form of
logistic regression models are commonly used in species
distribution modeling with species’ presence/absence data
(Guisan et al. 2002). Although GLMs allow for non-linear
relationships to be accommodated using polynomial terms,
they are nevertheless parametric models with distributions
that do not always reflect complex species responses to the
environment (Austin 2002, Austin et al. 2006). GAMs (Yee
and Mitchell 1991) have been widely used in species
distribution modeling as an alternative to GLMs (Lehmann
et al. 2002) because global regression coefficients are
replaced by local smoothing functions, allowing the
structure of the data to determine the shape of the species
response curves.

CTs are supervised classifiers that develop rules, based on
binary recursive partitioning, that can be used to classify
new observations (Breiman et al. 1984). CTs iteratively split
a full data set into partitions and evaluate how well the rules
that determine these splits can separate the data into
homogeneous classes. Typically, CTs are partitioned until
a split no longer achieves a certain level of homogeneity,
and then they are ‘‘pruned’’ back so that the model does not
over-fit the data and can provide robust predictions for new
data. Classification trees easily handle categorical predictors
and interactions between variables (which do not have to be
specified a priori) (De’ath and Fabricius 2000). On the
other hand, CTs can be unstable, that is, they may produce
very different models if the inputs are slightly varied (Prasad
et al. 2006). A newer ensemble modeling method, RFs,
overcomes this instability by developing many (hundreds or
thousands of) tree models using random subsets of the cases
and the predictor variables and then averaging the predic-
tions (Breiman 2001). Model error and variable importance
for RF models are estimated via bootstrapping (Cutler et al.
2007).

Based on exploratory data analysis (Syphard and
Franklin in press), we evaluated both linear and quadratic
relationships for all the continuous variables in the GLMs
and used three target degrees of freedom for smoothing
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splines in the GAMs. Backward stepwise variable selection
has frequently been used in SDM (Wintle et al. 2005) and
we used it here to provide a consistent and automated
approach for selecting final GLMs and GAMs for all
species, in spite of the acknowledged limitations of this
approach (James and McCulloch 1990). We entered
predictors in the following order: climate, terrain, then
soil variables, based on their relative importance determined
in preliminary analyses. We further refined GLMs by
manually removing quadratic terms if their coefficients
were positive, e.g. if the response curve was inverted.
Although a response curve can theoretically be bimodal in
the presence of competition (Austin and Smith 1989), we
considered this fitted form (increasing probability of
occurrence at extremely high and low values of a predictor)
to be a poor approximation of a bimodal response, and one
that produced predictions that were ecologically unrealistic
(Austin 2002). Thus, we only retained the linear term for
that predictor if it remained significant.

We tested spatial autocorrelation (SA) of model residuals
for the GLMs because, among the model types used in this
study, these global, parametric models are most susceptible
to misspecification in the face of autocorrelation (Miller
et al. 2007). Moran’s I (Moran 1948) was calculated for
lag�4000 m. The distribution of nearest neighbor dis-
tances among the vegetation plots was 210�13 800 m
(median 1600 m). Ninety percent of the plots had a nearest
neighbor within 4000 m, and so 4000 m was examined as
the lag distance. Monte Carlo simulation (1000 replicates)
was used to estimate the significance of Moran’s I because
the residuals from a logistic regression are not normally
distributed.

We built full classification trees for each species and then
pruned using an algorithm that automatically selected the
complexity parameter associated with the smallest cross-
validated error. If this algorithm selected only one split, we
increased the number of splits to two so our pruned tree
would include at least two decision rules. For Random
Forests models, we averaged the predictions from 500 trees.
We evaluated three randomly selected variables for each tree
based on the suggestion by Breiman (2001), that the square
root of the number of variables gives optimum results.

The performance evaluation measure that we used to
describe SDM prediction accuracy for each model was the
area under the curve (AUC) of the receiver operating
characteristic (ROC) plot (Hanley and McNeil 1982).
ROC plots show the true positive predictions versus false
positive predictions for all possible threshold values. There-
fore, the AUC (ranging from 0 to 1) represents the
probability that, for a randomly selected set of observations,
the model prediction for a presence observation will be
higher than the prediction for an absence observation.

We used a bootstrapping approach to estimate AUC and
to determine variable importance for GLM and GAM
models (Wintle et al. 2005). Five hundred bootstrapped
models were created by duplicating the dataset and then
randomly resampling from it so that every sample used for
training or testing has the same number of observations as
the original dataset. In this way, the reduced prediction
accuracy expected when a model is confronted with new
data could be estimated. To calculate prediction accuracy
with classification trees, we used 15-fold cross-validation

using the same number of splits for pruning all cross-
validated models. We calculated the average AUC based on
the results of the cross-validation. To calculate the AUC for
RF, we used the averaged ‘‘out-of-bag’’ predictions (average
number of cases withheld was 36%) from the models.

Modeling was carried out in the R 2.7.0 statistical
programming environment (R Development Core Team
2004) using the packages gam, rpart, randomForest,
ROCR, spdep, yaImpute and model_functions.R (from
Wintle et al. 2005).

Ranking environmental variables

For GLMs and GAMs we estimated the relative importance
of environmental variables by determining what percentage
of the 500 bootstrap models retained the variable (and/or its
polynomial term) as a predictor. In Random Forests,
variable importance is determined by comparing the
misclassification error rate of a tree with the error rate
that occurs if the values of a predictor variable are randomly
permuted (Cutler et al. 2007). Those variables that result in
the largest difference in accuracy (averaged over the 500
model replicates) for trees developed with the true values of
the variable compared to those developed with randomly
values are considered to be most important. We did not
assess variable importance for the classification tree models
because we did not perform any bootstrapping or model
averaging for this method.

Because measures of variable importance are calculated
differently in Random Forests than in GLMs and GAMs,
we developed a ranking system so we could compare
environmental selection among the different model types.
For each species in each model type, we evaluated all
environmental variables and ranked them from 1 (most
important) to 8. If two variables had the same importance,
we assigned them both the same rank and then proceeded to
rank the rest of the variables based on the order they would
be in if there were no tie. We averaged the ranks together
for climate, terrain, and soil variables for some analyses.

Generating prediction maps and calculating
correlation

To create prediction maps for all of our models, we used the
AsciiGridPredict() command in the R package yaImpute,
ver. 1.0�3 (Crookston and Finley 2008). In previous
studies, spatial overlap in predictions has been estimated
using Kappa or Spearman rank correlations that are
appropriate for categorical maps (Prasad et al. 2006,
Termansen et al. 2006). Because all of the methods we
used generated a likelihood of species’ presence on a scale of
0�1, we used a Pearson’s correlation coefficient to calculate
to correlation between prediction maps for each species,
pairwise between models (Termansen et al. 2006).

Analysis

To answer our questions about which variables best
explain spatial correspondence among prediction maps,
we averaged the pairwise map correlations among all
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model types for each species to use as the dependent
variable in a regression analysis. We first developed simple
regression models for each explanatory variable to explore
the effects of model accuracy, species prevalence, species
functional type, and environmental variable importance
on map correlation. After developing the simple regression
analyses, we estimated a multiple regression models. We
entered the explanatory variables into the model in
the order of the amount of variation they explained in the
simple models, and we only retained those variables that
were significant at p 5 0.05.

To estimate the effect of model accuracy, we averaged
the AUC from the predictions of all model types for each
species to use as the predictor variable. Species prevalence
was calculated as the proportion of plots in which the
species was present. We developed the species functional

type classification (Table 1) based on natural groupings of
species’ life form, demographic attributes, and fire response
strategy (details in Syphard and Franklin in press). For the
environmental variables, we used the average importance
rank for the climate, terrain, and soil variables (that were
developed from GLMs, GAMs, and RFs only).

Results

There was significant (pB0.05) positive spatial autocor-
relation (SA) in the residuals of GLMs for only 7 of 45, or
B16%, of the species. There was no apparent relationship
between SA in the residuals and species prevalence, AUC,
or species traits. Because so few models showed significant
SA in the residuals, and because the emphasis of this study

Table 1. Species and functional types evaluated in southern California map overlay. Prevalence is the proportion of plots in which species
was present. Ranges of correlation and AUC were derived from GLM, GAM, CT, and RF model types. Functional types: shrubFac�facultative
seeder shrub; shrubOS�obligate seeder shrub; shrubOR�obligate resprouters shrub; subshrFac�resprouting subshrub; subshrub S�post-
fire seeding subshrub; perrherb�perennial herb.

Species scientific name Functional type Prevalence Range correlation Range AUC

Adenostoma fasciculatum shrubFac 0.53 0.59�0.82 0.73�0.79
Adenostoma sparsifolium shrubFac 0.06 0.74�0.92 0.85�0.93
Arctostaphylos glauca shrubOS 0.07 0.51�0.79 0.71�0.92
Arctostaphylos pungens shrubOS 0.06 0.55�0.85 0.79�0.91
Arctostaphylos glandulosa shrubOR 0.14 0.55�0.91 0.78�0.84
Artemisia californica subshrFac 0.39 0.70�0.92 0.80�0.84
Artemisia tridentata subshrubS 0.03 0.50�0.67 0.81�0.90
Ceanothus crassifolius shrubOS 0.12 0.48�0.81 0.75�0.84
Ceanothus cuneatus shrubOS 0.03 0.37�0.70 0.67�0.93
Ceanothus greggii shrubOS 0.12 0.78�0.93 0.85�0.94
Ceanothus leucadermis shrubFac 0.12 0.70�0.90 0.77�0.89
Ceanothus tomentosus shrubOS 0.12 0.56�0.98 0.78�0.84
Ceanothus verrucosus shrubOS 0.03 0.61�0.84 0.74�0.92
Cercocarpus betuloides shrubOR 0.15 0.63�0.90 0.76�0.86
Cneoridium dumosum shrubOR 0.03 0.44�0.68 0.66�0.84
Eriophyllum confertiflorum perrherb 0.06 0.12�0.57 0.51�0.63
Eriodictyon crassifolium shrubFac 0.01 0.21�0.63 0.55�0.76
Eriogonum fasciculatum subshrFac 0.46 0.45�0.96 0.58�0.66
Galium angustifolium perrherb 0.03 0.23�0.59 0.62�0.83
Garrya veatchii shrubFac 0.04 0.45�0.70 0.76�0.89
Gutierrezia sarothrae subshrubS 0.05 0.29�0.83 0.60�0.80
Hazardia squarrosa shrubOR 0.09 0.35�0.77 0.48�0.66
Heteromeles arbutifolia shrubOR 0.12 0.53�0.81 0.64�0.77
Keckiella antirrhinoides subshrOR 0.06 0.36�0.66 0.62�0.75
Lonicera subspicata subshrOR 0.05 0.25�0.64 0.68�0.76
Lotus scoparius shrubOS 0.31 0.47�0.82 0.56�0.66
Malacothamnus fasciculatus subshrFac 0.02 0.01�0.51 0.52�0.61
Malosma laurina shrubFac 0.3 0.78�0.93 0.79�0.83
Mimulus aurantiacus subshrubS 0.11 0.60�0.83 0.60�0.71
Opuntia littoralis subshrubS 0.01 0.09�0.59 0.78�0.88
Penstemon spectabilis perrherb 0.02 0.36�0.67 0.72�0.81
Prunus ilicifolia shrubOR 0.09 0.58�0.80 0.68�0.83
Quercus berberidifolia shrubOR 0.37 0.77�0.97 0.76�0.81
Quercus wislizeni shrubOR 0.04 0.52�0.75 0.79�0.93
Rhamnus ilicifolia shrubOR 0.1 0.58�0.84 0.67�0.76
Rhamnus crocea shrubOR 0.05 0.08�0.31 0.53�0.63
Rhus integrifolia shrubOR 0.11 0.66�0.88 0.80�0.89
Rhus ovata shrubFac 0.16 0.62�0.85 0.74�0.78
Salvia apiana subshrFac 0.33 0.48�0.94 0.61�0.72
Salvia mellifera subshrFac 0.27 0.34�0.86 0.69�0.75
Toxicodendron diversilobum subshrOR 0.04 0.33�0.90 0.62�0.72
Trichostema lanatum shrubFac 0.03 0.51�0.73 0.73�0.85
Viguiera laciniata subshrOR 0.03 0.20�0.61 0.65�0.80
Xylococcus bicolor shrubOR 0.12 0.42�0.83 0.73�0.83
Yucca whipplei subshrOR 0.13 0.69�0.90 0.70�0.75
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was on spatial prediction and not estimation of parameters,
we did not treat SA further (e.g. by fitting a spatial
autoregressive error model).

Mean correlation among prediction maps varied accord-
ing to the methods used to develop the models, and there
was substantial variability in the correlations among species
(Fig. 1). The lowest correlation between maps occurred
between CTs and GAMs or GLMs, and the highest
correlation occurred between GLMs and GAMs, with
intermediate levels of correlation between RF and CTs,
GLMs or GAMs. Analysis of variance showed that correla-
tions were different among pairs (F�13.67; pB0.001)
(Fig. 1).

When model accuracy and species prevalence were both
low, Random Forests predicted distributions to occur over a
larger extent and to be more dispersed than GLMs or
GAMs (Fig. 2A, D). When different model types had
reasonable accuracy (AUCs generally above 0.75), they
predicted species to be distributed in the same general
locations of the study area (Fig. 2B, C).

Species prevalence and model accuracy explained more
variation in map correlation than the other variables,
although functional type and the importance of climate in
model selection were also significant (Table 2). The
relationship between map correlation and prediction accu-
racy was positive and linear, but the relationship with
prevalence was quadratic. In general, prediction maps had
the lowest correspondence when both species prevalence
and model accuracy were lowest. With higher prediction
accuracy and species prevalence, map correlation was also
much higher; but for the species with prevalence�0.2, the
relationship (between prevalence and map correlation) was
negative (Fig. 3). Because only a few species (8) had
prevalence values �0.2, however, this negative relationship
should be interpreted with caution.

Map correlation was higher for species that experience
fire-cued germination from a dormant seed bank (faculta-
tive seeder shrubs and obligate seeder shrubs) and lowest for
perennial herbs and subshrubs that respond to fire through
vegetative propagation (Fig. 4). Although the importance of
terrain and soil variables in the models did not influence the
correspondence among prediction maps, those models for

which climate was most important produced maps that had
better map correlation (Table 2).

When all of the significant explanatory variables (pre-
valence, AUC, functional type, and climate) were included
in multiple regression models, only species prevalence
and AUC remained significant predictors of map corre-
lation (Table 3). These two variables in combination
explained a large amount of variation in spatial correspon-
dence (adjusted R2�0.76).

When averaged together across all model types (GLMs,
GAMs and RFs), the climate variables were more important
in the SDMs than terrain or soil, which were both similar in
their relative importance (Fig. 5). The relative importance
of different variables when evaluated individually, however,
was different depending on the model type (Fig. 6). For the
GLMs and the GAMs, the three climate variables had
nearly equal importance, which was higher than the
importance of the other variables. For all three model
types, summer radiation was more important than the other
terrain variables; and the relative difference was substantial
for the GLMs and GAMs. Whereas the importance of the
other three terrain variables was similar for GLMs and
GAMs (although TMI was generally the lowest), winter
radiation and (especially) TMI were substantially lower
than slope in Random Forests. Soil order was substantially
more important than the terrain variables for GLMs and
GAMs. Differences in importance between terrain and soil
variables were insubstantial for Random Forests.

Discussion

The use of metrics such as AUC has become standard
practice in evaluating the performance of species distribu-
tion models. AUC is a very useful measure of comparative
model performance because it is threshold independent, but
any measure of predictive performance is limited by the
data available for model evaluation. The results of this study
reinforce the notion that it is also important to consider
additional criteria in model evaluation, depending on the
objective of the application (Austin et al. 2006, Hernandez
et al. 2006). If prediction maps will be used to make
conservation or resource management decisions, the spatial
distribution of model uncertainty may be particularly
important. While correlation among map predictions in
our study significantly improved with more accurate
models, there were other factors that strongly affected
spatial correspondence among predictions, especially species
prevalence. Map correlation also varied depending on the
modeling method used, species functional traits, and type of
environmental variables that were important in the models.
The effect of these factors on model performance should
therefore be taken into consideration for any SDM
application.

One caveat with regards to map correlation is that one
model may yield consistently lower (or higher) predictions
than another, and yet those maps may remain highly
correlated. The scaling of the predicted probabilities does
tend to vary according to modeling methods or species
prevalence (Real et al. 2006, Albert and Thuiller 2008) so we
would expect an offset in the predicted values from different
models. For this reason, correlation is an appropriate way to
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Figure 1. Pairwise correlations among prediction maps produced
using classification trees (CTs), Random Forests (RFs), generalized
linear models (GLMs) and generalized additive models (GAMs)
for plant species in southern California. The error bars represent
standard error.
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Figure 2. Maps displaying predicted probability of presence from a generalized linear model (GLM), generalized additive model (GAM),
and Random Forests. A � Viguiera laciniata (low prevalence (0.03), low map correlation low to moderate AUC�0.55�0.84; Table 1);
B � Adenostoma sparsifolium (low prevalence (0.06), high map correlation, high AUC�0.82�0.94); C � Artemisia californica (high
prevalence (0.39), high map correlation, moderate AUC�0.70�0.92); D � Gutierrezia sarothrae (low prevalence (0.05), low map
correlation, low AUC�0.60�0.85); E � Penstemon spectabilis (low prevalence (0.02), low map correlation, moderate AUC�0.72�0.81).
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establish a baseline comparison between maps. SDM
predictions are often scaled or thresholded in some way for
subsequent use in decision making (Freeman and Moisen
2008). If SDM predictions are used in an application where a
multi-class ranked categorization of habitat quality exists (has
been previously defined), then maps could be averaged and
compared spatially with a multi-class kappa statistic (as in
Albert and Thuiller 2008). Map similarity may diminish or
intensify once these thresholds have been applied depending
on the distribution of probability values predicted from each
model.

With regards to the modeling methods we compared,
classification trees overall had lower accuracy than the other
three methods (Syphard and Franklin in press), which is
likely why the pairwise comparisons of map correlation
were lowest with the CTs. However, because Random

Forests is essentially developed using an ensemble of trees,
we were surprised that the correlation between RFs and CTs
was as low as the correlation between RFs and GLMs or
GAMs. The relatively low accuracy and low map correla-
tion using single CTs is consistent with other studies that
found them to be somewhat unstable (Benito Garzón et al.
2006, Prasad et al. 2006). While there are some features of
CTs that may be more desirable than RFs (e.g. ability to
visualize the classification rules portrayed in single trees),
RFs may be a better choice for conservation practitioners
trying to create the most robust predictive maps.

Although prediction accuracy was highest with Random
Forests, the spatial correspondence in predictions was lower
between RF and GAMs or GLMs than it was between
GAMs and GLMs. Although the Random Forests models
predicted greater extents of suitable habitat than GLMs or
GAMs for species with low prevalence, it is unknown, based
on the data we had for model evaluation, whether this low
map correlation was due to true errors of commission.
Alternatively, the greater predicted extent (i.e. analogous
environmental conditions) may have represented areas that
were truly suitable for the species, and the species may not
have been sampled in that area, or it may have previously
occupied the area.

While prevalence strongly affected map correlation in
this study, other studies have shown that prevalence may
also be significantly related to model performance. In some
cases, prediction accuracy was higher when prevalence was
low (Segurado and Araújo 2004, Elith et al. 2006,
Hernandez et al. 2006), but McPherson et al. (2004) found
that models performed best when prevalence was inter-
mediate. In this study, prevalence had no significant effect
on AUC (p�0.46); therefore, the effect of prevalence on
map correlation can not be directly attributed to the effect
of prevalence on model performance (otherwise, both

Table 2. Model coefficients, p-values, and R2 for individual
explanatory variables in the simple regression models for map
correlation in southern California.

Variable Model parameters

Coefficient p-value R2

Soil order Prevalence 2.17 B0.001 0.34
Prevalenceffl2 �3.54 0.003
AUC 0.99 B0.001 0.34
Functional type NA 0.049 0.16
Climate 0.11 0.004 0.16
Terrain �0.07 0.218 0.01
Soil �0.01 0.646 0
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Figure 3. Mean correlation among four model types as a function
of mean AUC and species’ prevalence. Observations in the AUC
charts (top row) are scaled by prevalence (size of circle), and
observations in the charts of prevalence are scaled by AUC.
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perrherb shrubFac shrubOR shrubOS subshrFac subshrOR subshrubS

Figure 4. Boxplots for 45 plant species in southern California
showing map correlation versus species’ functional type.
shrubFac�facultative seeder shrub; shrubOS�obligate seeder
shrub; shrubOR�obligate resprouters shrub; subshrFac�re-
sprouting subshrub; subshrubS�post-fire seeding subshrub;
perrherb�perennial herb.

Table 3. Coefficients and p-values for variables retained in
the multiple regression models for map correlation in southern
California.

Variable Coefficient p-value

Soil order (Intercept) �0.51 B0.001
Prevalence 2.15 B0.001
Prevalenceffl2 �3.17 B0.001
AUC 1.08 B0.001

R2
�0.76
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variables would not have been retained in our multiple
regression). However, the relationship between species
prevalence and map correlation may be partly related to
the way that different models approximate species-response
functions and how those response functions translate into
predicted probabilities. If models vary in the way that their
distributions of predicted probabilities reflect the prevalence
of the species (based on the number of sample locations
used to build the models), then presumably these model
differences would be manifested more apparently in map
correlations if prevalence were either very low or high.

Another reason that low prevalence may have affected
map correlation is that species may have low prevalence
because they are difficult to detect. One consequence of low
detectability is that a species could actually be present in
locations where it is predicted to be absent. This would
likely affect the model’s prediction accuracy, but may also
affect spatial extrapolation, reflecting differences in ways
that models characterize species’ presences. Furthermore, if

species have low prevalence, there is more room to
maneuver on the map, providing a greater number of
opportunities for spatial divergence in predictions.

In this study, the relationship between plant functional
type and map correlation appears to result from the
observed correspondence between functional type and
model prediction accuracy. The functional types with the
highest prediction accuracy tended to be those with high
site fidelity � long-lived facultative and obligate seeders with
poor dispersal and persistent seed banks (Syphard and
Franklin in press). Those functional types that had higher
AUC also had higher map correlation among models.
Therefore, in a multiple regression model, functional type
was not selected as a significant predictor of map correlation
if AUC was already in the model.

A source of uncertainty in our study is the error inherent
in the historic VTM data, which could also affect spatial
correspondence of predictions, particularly for those models
that select terrain and/or soil. Terrain and soil variables are
more heterogeneous than climate at landscape scales.
Because climate varies slowly over space, there is greater
certainty that those variables would be accurately calculated
within the 300-m range of the VTM data that had an
average positional error of �130 m (Kelly et al. 2008).
Coarsening data resolution could potentially increase or
decrease model performance. On one hand, performance
may increase after smoothing errors in environmental or
species data, but on the other hand, performance may
decrease if there is a lack of spatial matching between species
observations and their associated environmental predictors
(Guisan et al. 2007).

The primary influence of environmental variable selec-
tion on the spatial correspondence of predicted distribu-
tions was related to climate. In other words, the more that a
species distribution could be modeled through climate
variables alone, the more likely the predictions were likely
to overlay. Some SDMs only use climate variables (e.g.
bioclimatic envelope models, Huntley et al. 2004, Kueppers
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Figure 6. Mean importance ranking for all variables using Random Forests (RFs), generalized linear models (GLMs) and generalized
additive models (GAMs). TMI�topographic moisture index. The error bars represent standard error.

Figure 5. Mean importance ranking for climate, terrain, and soil
variables using Random Forests (RFs), generalized linear models
(GLMs) and generalized additive models (GAMs). The error bars
represent standard error.
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et al. 2005, Heikkinen et al. 2006), and our results are
consistent with those studies that suggest that climate tends
to be the overriding driver of large-scale distributional
patterns for plants. It has been shown (Segurado et al. 2006)
that variable ‘‘explanatory’’ power (inflation of variable
significance) is directly proportional to the spatial auto-
correlation (SA) of the predictor, and the importance of
variables found in this study was in order of increasing
spatial resolution and therefore SA (terrainBsoil order
Bclimate). However, virtually all environmental drivers are
spatially patterned. The general lack of SA in our model
residuals suggests that the spatial pattern in the distributions
is explained by the spatial pattern in the predictors.
Predictors that vary slowly in space will capture broad
first-order patterns in species distributions. The ranking of
variable importance in this study indicates how much of the
observed pattern is explained by each predictor, although it
cannot show conclusively that climate imposes the most
proximal limiting factor to distributions.

In addition, there was substantial variation in the
importance of different environmental predictors among
species, and terrain and soil were also important for
explaining that variation. One potential reason that, for
some species, terrain or soil variables were selected over
climate variables is that their climatic range may have been
greater than that which was in the study area. Thus, the
model(s) sought finer-scaled variables to explain what
aspects of species distribution patterns the climate variables
were missing. Therefore, we suggest that both terrain and
soil should be considered in any SDM study for plants at a
landscape scale. As we have already noted, a meta-analysis
found that models that included environmental predictors
from multiple scales showed the highest predictive
performance (Meyer and Thuiller 2006). Further, while
there are perceived trade-offs between model parsimony
and model accuracy, Drake et al. (2006) found that the
most accurate models were those that included the largest
number of environmental predictors, even after optimizing
the models to avoid overfitting.

In conclusion, average model performance (measured by
AUC) was essentially the same for the GLMs, GAMs, and
Random Forests models (although CTs had lower accu-
racy). Yet, despite these similar accuracies, our results show
that prediction maps and the environmental variables
selected varied substantially among the different methods.
When the goal of the SDM study is to create prediction
maps, we suggest that the model evaluation process should
go beyond global accuracy measures and include some
evaluation of the spatial pattern of predictions. For
example, in the context of climate change modeling and
other applications of SDM, some authors have suggested
averaging model predictions due to high variability in their
projections (Thuiller et al. 2004a, b, Marmion et al. 2008).
However, Araújo et al. (2005a, b) cautioned that accuracy
will most likely increase only if better models are considered
as opposed to more models. There are a number of
approaches to ensemble forecasting in SDM and other
modeling fields in addition to model averaging or consensus
methods (Araújo and New 2007).

Further, it might be prudent to evaluate spatial
predictions from model types that tend to be differ-
ent, such as GLMs vs Random Forests, to determine

a bracket of uncertainty. This might be particularly
important for species that have either very low or very
high prevalence. Nevertheless, it is important to consider
that map correlation in this study was a function of those
models that we selected to examine and the variable
selection methods that we used. While we chose common
methods used in SDM, the differences in predictions
are ultimately a function of how the different models
handle prediction.
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