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A B S T R A C T

The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central
driver of simulated plant growth in many ecological models. PET is influenced by solar and longwave
radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature
alone. This approach can cause biases in projections of future climate impacts in part because it
confounds the effects of warming due to increased greenhouse gases with that which would be caused by
increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar
radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water
vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We
tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened
by continuing woody encroachment. Both the new and the standard temperature-dependent
MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model
of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a
much more gradual increase in PET over the 21st century for three contrasting future climates. This
difference led to lower simulated drought effects and hence greater woody encroachment with the new
algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing
with climate change.
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1. Introduction

Climate change may affect watershed hydrology and plant
water availability by altering patterns of precipitation
and evapotranspiration (ET), thereby influencing the growth and
survival of plants. These water-dependent effects are often related
to potential evapotranspiration (PET), commonly defined as the ET
of a uniform, densely vegetated area with abundant soil water in
the rooting zone (Rao et al., 2011). PET has been used to calculate a
variety of aridity, drought and soil moisture indices, including the
ratio of precipitation to PET, precipitation–PET, PET–ET, or ET/PET.
The widely used Palmer Drought Severity Index is also linked to
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potential evapotranspiration (Guttman, 1998 Sheffield et al., 2012).
Such PET-based indices are used (along with other climate
variables) to model plant productivity (Churkina et al., 1999),
drought-induced tree mortality (Gustafson and Sturtevant, 2013),
the extent and frequency of wildfire (Littell et al., 2010) and the
geographic ranges of plant species (Gray and Hamann, 2013).

Evaporation, and therefore PET, is influenced by incoming solar
radiation, which provides the energy required to evaporate water,
and aerodynamic effects dependent on wind, humidity, and
temperature. These two aspects of evaporation are incorporated
in the Penman formula applied to open water by Penman (1948).
The approach was adapted to vegetation by Monteith (1965) in the
Penman–Monteith equation, which includes the additional resis-
tance to water vapor transfer imposed by plant stomata. These
methods can provide accurate estimates of water use by irrigated
crops (Howell and Evett, 2006), but have substantial data
requirements, including net radiation (or a parameterization to
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calculate it from shortwave radiation), near-surface air tempera-
ture, vapor pressure or dewpoint temperature, and wind speed
(Jensen et al., 1990). Other than temperature and vapor pressure,
direct measures or station-based interpolations of these variables
are not available over most of the earth, though coarse-scale
estimates derived from reanalyses of station data have recently
become available (Mitchell et al., 2004). Thus, more empirical
methods, often reliant solely on temperature, have remained in use
for estimating PET (e.g., Thornthwaite, 1948). In such methods,
temperature is assumed to act as a proxy for both net radiation and
vapor pressure deficit.

However, empirical approaches may differ substantially from
each other in their PET predictions (Lu et al., 2005) and give rise to
varying biases across geographic regions (Hobbins et al., 2008;
Fisher et al., 2011). In many regions, pan evaporation, which is
closely related to PET, has decreased over the 30–50 year period
preceding �2000, even though temperature has generally
increased over this period. Thus, temperature-based methods
may yield increases in PET that are at variance with observed
trends (Roderick et al., 2009).

Temperature-based methods may be particularly prone to error
when extrapolated into the future to assess the effects of
greenhouse-gas driven warming on PET (Milly and Dunne,
2011). Such biases are derived from the fact that increasing
temperature by increasing solar radiation would likely cause a
greater increase in PET than would increasing temperature by
increasing greenhouse gases, because radiation provides the
energy driving evapotranspiration (Scheff and Frierson, 2014).
Thus, projections of future drought severity and its effects on
vegetation may be overestimated by the use of temperature-based
estimates of PET derived from historical climate data. One such
example of this potential for bias involves the future rate of woody
encroachment of grasslands, which we consider here.

One could prevent such biases by making use of radiation
outputs from the general circulation models (GCMs) used to
project future climates (IPCC, 2007; Taylor et al., 2012), but the
GCM outputs are at coarse scales (>100 km resolution) and must be
spatially downscaled for use at the increasingly fine scales of
ecological models, commonly at resolutions of 1–10 km. Methods
for statistically downscaling temperature, precipitation, and water
vapor pressure are readily available, based on the fine-scale spatial
pattern of historical means for these variables (Fowler et al., 2007).
These historical means can be derived from gridded values of
historical data, such as that available from the PRISM group (Daly
et al., 2008). Fine-scale gridded data for net radiation is not yet
available, and this variable is seldom used in ecological assessment
models. However, ground level radiation has been linked to the
incoming solar radiation at the top of the atmosphere (extrater-
restrial radiation), which is a function of site latitude and time of
year (Thornton and Running, 1999), thereby providing an
alternative method for estimating PET.

Unbiased estimates of future PET are especially important for
assessing how climate change may affect semiarid ecosystems,
where water substantially limits plant productivity. One such
region is the Northern Great Plains, USA, which harbors
exceptional and distinctive biodiversity (Olson and Dinerstein,
2002). Although more than 70% of the region’s mixed-grass prairie
has been converted to row-crop agriculture or otherwise devel-
oped, the region still contains more than 15 million ha of native
grassland (Samson et al., 1998). Trees and shrubs have increasingly
invaded the remaining Great Plains grasslands over the past
century, reducing habitat for grassland specialist birds and
mammals and forage production for domestic livestock
(Eggemeyer et al., 2006; Spencer et al., 2009; Barger et al.,
2011). Climate change may accelerate or decelerate this process,
depending on the direction and degree of change in temperature,
precipitation, and humidity; direct effects of increased CO2 on
productivity and water use efficiency; and fire and grazing
regimes.

To assess the threat of woody encroachment in the Northern
Great Plains, USA (NGP), we have used the dynamic vegetation
model MC1 (Bachelet et al., 2001), which calculates monthly water
balance and plant growth as limited by water and other factors. In
the standard version of MC1, these calculations are based on PET
determined with Linacre’s (1977) algorithm, which is derived from
the Penman equation, but uses semi-empirical temperature
relations to estimate net radiation. This approach makes future
PET estimates susceptible to bias. We therefore derived a method
that reduces the potential bias in estimating net radiation from
temperature alone by linking it to extraterrestrial radiation, as
calculated from site latitude and time of year. We calibrated
the new PET algorithm with radiation data from the NGP to assess
the likelihood of woody encroachment of NGP grasslands as
influenced by future climate and land management practices.

Here we compare our new PET values with gridded estimates
of monthly pan evaporation synthesized by the PenPan model of
Rotstayn et al. (2006) using a comprehensive set of climate and
radiation inputs derived from the North American Land Data
Assimilation System. Pan evaporation is a widely reported measure
of evaporative demand, which can be used to approximate PET
when multiplied by a factor of 0.7 (Eagleman, 1967). Next, we
compare PET calculated with the new algorithm to that of the
original algorithm of MC1 for three contrasting future climates,
chosen for use in our assessment of woody encroachment of
the NGP. We then project future woody encroachment by MC1 with
the new vs. original PET algorithm for the three future climates
with three fire-management scenarios. For this purpose we used
the MC1 version of King et al. (2013a,b); King et al. (2013a,b) that
was calibrated for the ponderosa pine (Pinus ponderosa)–grassland
ecotone at Wind Cave National Park in the southern Black Hills of
South Dakota, which lie within the larger NGP region. For the
current projections we further calibrated MC1 for Juniperus
virginiana (eastern redcedar), a native tree that has been
particularly invasive of grasslands of the SE portion of the NGP
and with future warming may threaten much of the NGP, and for
Juniperus scopulorum (Rocky Mountain juniper), which is
encroaching into grasslands in the western portion of the NGP.

2. Materials and methods

Our approach takes the following steps:

1. Determine an empirical relation for atmospheric transmittance
of solar radiation as a function of monthly maximum and
minimum temperatures (Tmax,Tmin), where transmittance =
monthly shortwave insolation on a horizontal surface/monthly
extraterrestrial insolation.

2. Use Linacre’s (1968) approach to estimate net radiation from
mean monthly temperature and solar irradiation (i.e., transmit-
tance � extraterrestrial insolation).

3. Use net radiation (Qn) and Linacre’s (1977) approximations of
the relevant properties of air and water vapor in the Penman
equation to derive an algorithm relating PET to mean monthly
values of Qn, temperature and dewpoint temperature.

4. Compare our estimates of historical monthly PET for the NGP
with those of the standard MC1 PET algorithm and the synthetic
pan evaporation estimates of Hobbins et al. (2012), which were
multiplied by 0.7 to approximate PET. Hobbins and co-workers’
estimates involve additional inputs and processes, such as wind
speed, not included in our algorithm.

5. Compare our estimates of PET for the NGP with those of the
standard PET algorithm of MC1 using future climate variables



Fig. 1. Northern Great Plains study area shown in gray in the upper panel. U.S. Northern Great Plains shown in color. Two eastern cells and a north-central cell (shown as
blanks) were excluded for lack of soil data. Other cells, mostly in the southwest corner of the grid, were excluded for being >1500 m elevation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
SAMSON stations used to estimate the relation between monthly transmittance and
diurnal temperature range (DTR) for the Northern Great Plains, USA. Data for 1961–
1990, except where indicated otherwise.

Station N. latitude Longitude Elevation (m)

North Platte, NE 41.13 �100.68 849
Bismarck, ND 46.77 �100.75 502
Minot, NDa 48.27 �101.28 522
Pierre, SD 44.38 �100.28 526
Rapid City, SD 44.05 �103.07 966
Casper, WY 42.92 �106.47 1612
Sheridan, WY 44.77 �106.97 1209
Miles City, MTb 46.43 �105.87 803
Lewistown, MT 47.05 �109.45 1264

a 1961–1988.
b 1961–1989.
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from three GCMs spanning a substantial range in temperature
and humidity.

6. Compare simulations of future juniper invasion of the NGP by
MC1, based on the new vs. standard PET algorithms, to assess
some of the ecological implications of our revised algorithm.

2.1. Study area

For our purposes, the NGP includes the Northwestern Glaciated
Plains, Northwestern Great Plains, and Nebraska Sand Hills US EPA
Level III ecoregions (http://www.epa.gov/wed/pages/ecoregions.
htm) and the lower-elevation portions of the Middle Rockies
ecoregion they surround. For logistical convenience we consider a
grid of 3000 (�800 m) cells, each cell centered on a larger cell of arc
angle 0.5� (�50 km), over the area from 41–49� N latitude and
97.5–112� W longitude. When cells of elevation >1500 m are
excluded (see Section 2.5), this grid approximates our ecoregion-
defined NGP (Fig. 1).

2.2. Atmospheric transmittance

Daily extraterrestrial insolation (in J m�2 day�1) was calculated
following Bristow and Campbell (1984), as

Q0 ¼ 86400S0ðhsin’sind þ cos’cosdsinhÞ
p

(1)

where S0 is the solar constant (1360 W m�2), h is the half day length
(half the time the sun is above the horizon: cos h = �tan ’ tan d), ’
is site latitude and d is the solar declination. Solar declination,
latitude and half daylength are in radians.
The fraction of extraterrestrial insolation that reaches level
ground as short wave radiation (transmittance) has been
empirically related to daily diurnal temperature range (DTR)
(Bristow and Campbell, 1984), as well as vapor pressure, and rain
occurrence (Thornton and Running, 1999). However, MC1 uses
monthly climate data, and the algorithms developed with daily
data do not readily convert to monthly data. We therefore derived
a transmittance–temperature relationship from the monthly
short-wave solar irradiances of the Solar and Meteorological
Surface Observation Network (SAMSON) data base (NREL, 1993).
For this purpose we chose nine SAMSON stations distributed
relatively evenly across the NGP (Table 1), excluding several where
nearby mountains to the east and/or west may reduce direct beam
irradiance. The data were from 1961 to 1990 (a slightly shorter
period for two stations, Table 1).

http://www.epa.gov/wed/pages/ecoregions.htm
http://www.epa.gov/wed/pages/ecoregions.htm


Fig. 2. Monthly transmittance (shortwave surface insolation/extraterrestrial
insolation) vs. mean daily temperature range per month (DTR) for 1961–1990 at
nine SAMSON stations within the NGP.
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Monthly transmittance (tr) and monthly mean DTR are
positively correlated, more strongly so for March through
November than for December through February (Fig. 2). The weak
relationship in winter likely occurs because snow cover increases
transmittance under cloudy conditions, due to multiple reflections
between high-albedo snow and clouds (Thornton and Running,
1999). We use the regression relation

tr ¼ 0:37830ð�0:0041sdÞ þ 0:012125ð�0:00028ÞDTR (2)

derived from the 2403 monthly values for March through
November to match our emphasis on the growing season. Short-
wave insolation (Qs) can then be calculated as

Qs ¼ trQ0 (3)

2.3. Net radiation

Linacre (1967, 1968),) derived the following linear approxima-
tion for net radiation (Qn) by assuming that outgoing long-wave
radiation is that which would be emitted when ground tempera-
ture equals near-surface air temperature and the ground emissivity
is 1:

Qn ¼ ð1 � aÞQs � 1440 � 0:16Fð1 � 0:01TÞ (4)

where a is surface albedo, F = 0.2 + 0.8(n/N), where n/N is the
fraction of daylight hours with bright sunshine, and T is the mean
temperature (�C) over the period for which Qn is calculated. Both Qn

and Qs are in cal cm�2 day�1, i.e., the numeric value of Qs in Eq. (3)
has been multiplied by 0.0000239 to convert it to these units 2.
(We use the original units of Linacre (1968, 1977),) in our
derivation, thereby retaining the one or two significant digits of
his approximated coefficients and convert our final expression for
PET to standard metric units.) Based on relations between diffuse
and direct short-wave radiation and atmospheric transmittance
(tr) reported by Spitters et al. (1986), we assume that the sunlit
fraction n/N increases linearly with the transmittance (tr), ranging
from 0 for tr � 0.25 to 1 when tr � 0.75. Thus,

F ¼ 0:2 þ 0:8ðtr � 0:25Þ
0:5

(5)

which is floored and capped at 0.2 and 1, respectively. Following
Linacre (1977) we set a = 0.05, the albedo of open water. Because Qn

varies linearly with T, Eq. (4) should yield relatively unbiased
estimates when monthly means are used for temperature and Qs.

2.4. Calculation of PET based on net radiation and air and dewpoint
temperatures

Linacre (1977) expressed the Penman formula for evaporation
from open water as

L � PETo ¼ Qn þ rcS=Dra
1 þ g=D

� �
(6)

where L is the latent heat of vaporization of water (ffi580 cal g�1),
PETo is potential evaporation from open water in g cm�2 s�1, r is
the density of air (ffi0.0013 g cm�3), c is the specific heat of air
(ffi0.24 cal g�1 �C�1), S is the vapor pressure deficit (mbar), D is the
derivative of saturation vapor pressure with respect to air
temperature (mbar �C�1), and g is the psychrometric constant
(mbar �C�1). Here ra is the momentum surface aerodynamic
resistance, which decreases with increasing wind speed, set to
an intermediate value of 1.2 s cm�1 by Linacre (1977). The
expressions 1 + g/D and S/D were approximated in terms of
temperature and dewpoint temperature (Td) by Linacre (1977) as:

1 þ g
D

¼ 2 � 0:025T (7)

and

S
D

¼ ðT � TdÞ (8)

where both temperatures are in �C. These estimates are within 10%
of actual values over a temperature range of 8–36 �C (Linacre,
1977). They are reasonable for an approach based on monthly
averaged inputs and with substantial uncertainties due to the lack
of wind speed data.

Converting Qn from Eq. (4) to MJ m-2 and substituting these
approximations into Eq. (6) and expressing PETo in mm day-1
yields

PETo ¼ 23:9Qn

58ð2 � 0:025TÞ þ
15ðT � TdÞ
80 � T

(9)

where monthly averages are used for T, Td and Qn. The right hand
term of Eq. (9) is identical to the right hand term of Linacre’s (1977)
expression for PETo, but our expression for Qn (Eq. (4)) is linked
to extraterrestrial insolation and temperature rather than to
temperature alone.

We followthe convention usedin MC1 of adjusting PETobya user-
specified scalar, set to 0.9, because the potential evapotranspiration
from an herbaceous canopy transpiring without limitation by soil
water is typically somewhat less than the evaporation from open
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water. We also set PET = 4.5 mm month�1 if the calculated value falls
below thisvalue,asdoneinthestandardMC1 PETalgorithm,with the
rationale that months that are on average cold and dark will
nonetheless include some brighter, warmer intervals of positive PET.
Hence,

PET ¼ maxð0:9PETo; 4:5Þ (10)

In addition, we replaced Linacre’s (1977) temperature-based
estimate of dewpoint temperatures with available values for the
historical simulation, or vapor pressure converted to dewpoint
temperature for the future simulations by MC1. This approach
permits direct comparison of PET values generated by MC1 with
the new algorithm with those of the standard temperature-related
algorithm.

Thus, we have derived a method that should be more accurate
for approximating monthly PET, which serves as an upper bound
for the actual ET simulated by MC1 and other (but not all) process-
based vegetation models. The input variables are latitude (used in
calculating monthly extraterrestrial radiation), monthly mean
dewpoint temperature and monthly maximum and minimum
temperatures (used to calculate monthly mean temperature and
diurnal temperature range). The linkage of net radiation to
extraterrestrial radiation in the Penman formulation of PET is
expected to substantially improve our simulations of future PET, as
compared with that generated by algorithms based only on
temperature.

2.5. Comparison of PET with modeled pan evaporation

We compared our simulated PET values with simulated pan
evaporation generated by the PenPan model of Rotstayn et al. (2006).
This modelusesthePenman formulation, modifiedto account for the
geometry of U.S. class-A evaporation pans, which are set above the
ground surface and have sides that intercept additional radiation.
The model was driven by seven meteorological and radiation drivers
from the North American Land Data Assimilation System, as follows:
2-m air temperature and specific humidity, surface pressure, zonal
and meridional components of 10-m wind speed (transformed to a
2-m height), downwelling shortwave radiation and downwelling
longwave radiation. Monthly pan evaporation from the PenPan
model for the May–October warm season was highly correlated with
that reported from 251 pans across the U.S. (r2 = 0.756), with little
bias (Hobbins et al., 2012).

For our comparisons, we used monthly PenPan values for a
rectangular grid of 1/8� cells covering 41–49� latitude, �112 to
�97.5� longitude, a region including nearly all of our NGP study
area. We simulated PET with our new algorithm and with the
standard MC1 algorithm using a regular sampling of 3000 climate
data from the PRISM group (Daly et al., 2008), taken across the
above grid at a spacing of 0.5� in latitude and longitude. Soil bulk
density, depth, and texture data from Kern (1995, 2000) were
downscaled to the 3000 grid of the climate data. Soil data are not
necessary to calculate PET alone, but are a required input to
MC1 and were used in simulating woody encroachment (Sec-
tion 2.7). We multiplied the pan evaporation values of Hobbins
Table 2
Mean annual values over the NGP grid for 2081–2100 for downscaled climates from thre
the 1981–2000 PRISM historical climate.

Future climate Mean temperature
(�C)

Temperature change Mean 

(mm/y

CSIRO 11.06 3.92 541 

Hadley 13.17 6.02 433 

MIROC 13.78 6.63 353 
et al. (2012) by 0.7, the approximate ratio of PET to U.S. class-A pan
evaporation (Eagleman, 1967; Allen and Crow, 1971) and compared
each PET value with the corresponding adjusted pan evaporation
value for the closest 1/8� cell centered to the NW of the PET cell. We
restricted our analysis to cells of elevation <1500 m (75% of the
cells) because Linacre’s (1977) approximate values for the density
of air and the so-called psychometric constant are for low
elevations. (These values vary with elevation in the PenPan
model.) The excluded cells were mostly in the Wyoming basin and
Rocky Mountains ecoregions, outside of our area of interest. The
resulting grid has a natural vegetation cover that is mostly
grassland (Küchler, 1975), simplifying the interpretation of our
subsequent simulations of vegetation based on the two PET
algorithms. With the exclusion of elevations >1500 m and three
cells with missing soil data, our comparison included 343 locations
over 372 months (1979–2009), the period of overlap of the pan
evaporation and the PRISM climate data.

2.6. Future climate projections for PET algorithm comparisons

Twenty-first century climate projections were acquired for
three GCMs that span much of the range in temperature increases
associated with the IPCC SRES A2 greenhouse gas emission
scenario for the conterminous US (Naki�cenovi�c and Swart,
2000): CSIRO Mk3 (Gordon, 2002), Hadley CM3 (Johns et al.,
2003) and MIROC 3.2 medres (Hasumi and Emori, 2004)
(henceforth CSIRO, Hadley and MIROC). GCM future projections
were downscaled using the delta or anomaly method, a simple
statistical approach (Fowler et al., 2007). For each climate variable
and each future month, we calculated anomalies between future
and mean monthly historical (1971–2000) GCM-simulated values
for each GCM grid cell over the conterminous U.S. We used
differences for temperature and ratios for precipitation and vapor
pressure (capped at a maximum ratio of five). Anomalies were then
downscaled to our 3000 grid using bilinear interpolation and
applied to the monthly historical PRISM baseline (1971–2000)
available at the same spatial scale.

The three chosen GCM simulations diverge over the 21st century
for the NGP (Table 2). The Hadley and MIROC futures become
substantially hotter than does CSIRO. Spatially averaged annual
precipitation is unchanged for Hadley, increases for CSIRO and
decreases for MIROC. Relative humidity increases somewhat for
CSIRO, but decreases for Hadley and especially MIROC (Table 2).
There is also an increase in aridity from east to west-of-center of the
NGP for both the historical and the future climates (Fig 3). CSIRO is
wetter and MIROC drier than historical across the NGP. Moreover, the
relative pattern of change from 1981–2000 to 2081–2100 differs
among the future climates. The percent difference in precipitation is
greatest in the north-central NGP for CSIRO (+44%), ranges between
�15% and +15% for Hadley, and exhibits the greatest difference in the
southeast NGP for MIROC (�28%).

2.7. Ecological assessment of the new PET algorithm with MC1

The dynamic global vegetation model MC1 simulates plant
growth and biogeochemical cycles, vegetation type, wildfire, and
e GCMs (2081–2099 for Hadley). Change in comparison to the respective means for

precip.
r)

Percent precip. change Mean RH
(%)

Percent RH change

23.9 65.8 9.4
�0.8 58.0 �3.7

�19.2 53.1 �11.7



Fig. 3. Pattern of mean annual precipitation across the NGP for 1981–2000
(historical) and 2081–2100 for the indicated future climates (2081–2099 for
Hadley) shown on the left. Ratio of corresponding future to historical precipitation
shown on the right.
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their interactions. The model simulates competition between trees
and grasses (including other herbaceous species), as affected by
differential access to light and water, and fire-caused tree mortality
(Bachelet et al., 2000, 2001). MC1 has been used extensively to
assess future climate change effects on natural vegetation and
carbon stocks (Bachelet et al., 2003; Lenihan et al., 2008; Rogers
et al., 2011; Halofsky et al., 2013).

Grass and tree production rates are based on maximum
monthly production rates that are multiplied by temperature-,
water-, and CO2 dependent scalars that differ between grasses and
trees (Bachelet et al., 2001). The water scalar ranges between 0 and
1 and is a function of the ratio of plant available water to PET, where
plant available water includes monthly precipitation plus plant-
extractable water in the soil layers accessed by grasses or more
deeply rooted trees. Because PET is in the denominator of the water
scalar function, higher estimates of PET will reduce simulated
production for specified values of monthly precipitation and plant
extractable water. Changes in the PET algorithm will also affect
simulated transpiration, thereby affecting the rate at which plant
extractable water declines during drought periods. For the
simulation of natural fires, ignitions occur when temperature-
and humidity-related fire danger indices are exceeded. Although
PET does not affect the timing of fires, it indirectly affects simulated
fire intensity and resultant tree mortality, via its effects on
productivity and hence fuel loads and tree size.

MC1 projects the dynamics of lifeforms, including evergreen
and deciduous needleleaf and broadleaf trees, as well as C3 and C4
grasses. However, the model can also be parametrized for a
particular dominant species of the associated lifeform. Here we
modified the version of MC1 of King et al. (2013a), which was
calibrated to project the observed ecotone between ponderosa
pine and grasslands at Wind Cave National Park in the Black Hills of
South Dakota, near the center of the NGP region. Several
parameters were modified to simulate Juniperus rather than
ponderosa pine, based on the aboveground net primary produc-
tivity and biomass reported by Norris et al. (2001) for dense stands
of J. virginiana in NE Kansas �200 km south of the SE corner of the
NGP region considered here. The parameter KLAI, the tree stem
biomass at which the leaf area index (LAI) attains half its maximum
value (when leaf biomass is adequate), was reduced from 2000 to
1000 g C m�2 for the evergreen needleleaf lifeform that includes
junipers. This change increases the LAI associated with a specified
tree biomass by a factor of up to two when that biomass is low, but
has little effect at high biomass. Our rationale for this change is that
it better simulates the observations of Norris et al. (2001). The
widespread dispersal of juniper seeds by birds should result in high
densities of young junipers between existing trees, thereby
substantially increasing regional LAI without a large increase in
supporting woody biomass. In addition, the mortality rates for live
large wood (
tree stems) and structural roots were increased by a
factor of 1.5 for the evergreen needleleaf lifeform, for this rather
small tree species.

We used the original fire mortality function of MC1 rather than
that of King et al. (2013a,b); King et al. (2013a,b), which had been
selected for fire-resistant ponderosa pine. We lowered the ratio of
bark thickness to stem diameter (which affects fire mortality) to
0.025, the value used for Rocky Mountain juniper (Juniperus
scopularum) by Lutes and Robinson (2003). We also halved the fuel
depth ratio from 0.042 to 0.021 for the evergreen needleleaf
woodland and forest vegetation types, thereby doubling the fuel
packing ratio and substantially reducing the intensity and
fire-caused mortality of simulated fires for these tree-dominated
vegetation types. This change was made because juniper litter is
somewhat less dense than that of other conifers, such as ponderosa
pine and the litter of small-needled species, such as juniper, burns
less intensely than that of longer needled pines (de Magalhães and
Schwilk, 2012). The resultant decrease in fire intensity is consistent
with observations that juniper stands suffer less fire mortality once
they become dense enough to shade out the grasses, which fuel
hotter fires (Fuhlendorf et al., 1996).

MC1 is run in four successive phases: an equilibrium phase,
which initializes the carbon pools and vegetation types, followed
by three transient phases; spinup, historical, and future. The
spinup phase is run iteratively with detrended historical climate
data to readjust the carbon pools and vegetation types in response
to dynamic fire and the historical phase is run with transient
historical climate data starting in 1895. For our assessment of the
influence of the PET algorithm on woody encroachment of the NGP,
we altered this protocol by setting fires every five years during the
spinup and historical phases, thereby ensuring extremely low tree
biomass (0.001–0.005 g C m2) across the NGP at the beginning of
the future simulations. This initialization to grassland allows one to
assess the effects of variation in climate across the NGP on
simulated woody encroachment. To some degree this approach
also accounts for the frequent grassland fires set by Native
Americans before Euro-American settlement and the low frequen-
cy of firebreaks over the extensive flatter portions of the NGP that
resulted in large burn areas per ignition (Higgins, 1986; Anderson,
1990; Courtwright, 2011).

We used the same future climates and sampling of every 60th
3000 grid cell (0.5� spacing) as for the PET comparisons. We assumed
that grazing animals (domestic and/or wild) remove 50% of the
monthly aboveground grass production during the growing
season, i.e., an intermediate grazing intensity (Holecheck et al.,
1999; King et al., 2013b). This grazing level results in lower
standing grass biomass and hence less intense fires than the no
grazing case. Three idealized fire scenarios were chosen, based in
part on our survey of land managers in the NGP: no fire; spring
(May 1) fires set at 40 year intervals; and fall (Oct. 16) fires set at



Table 3
Summary statistics for the comparison of PET generated by the new algorithm (PETnew) and the standard algorithm (PETstandard) to that generated by the PenPan model. The
first (left-hand) column indicates the comparison being made; the second column lists the ratios of mean 1979–2009 PET for the NGP (e.g., PETnew/PenPan); the third and
fourth columns list the regression slopes (standard deviations in parentheses) and correlations, respectively, for annual PET per year per grid cell; the fifth column lists the
correlations for the 31-year mean annual PET per grid cell; the sixth column lists the correlations for mean annual PET for the NGP. The bottom row lists the number of PET
values per algorithm being compared (N). Columns 5 and 6 are based on the same data as Figs. 4 and 5, respectively.

Comparison Ratio of mean PET Regression slope (annual PET per year
per cell)

r (annual PET per year per
cell)

r (31-year mean annual PET
per cell)

r (mean annual PET over
NGP)

PETnew vs.
PenPan

0.994 0.888 � 0.0075 0.755 0.735 0.943

PETstandard vs.
PenPan

1.063 0.807 � 0.0085 0.676 0.625 0.816

N 1 (31-year mean for the
NGP)

10633 (31 years � 343 locations) 10633 (31
years � 343 locations)

343 locations 31 (31
years � 1 location)
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10 year intervals. The first scenario provides the simplest
assessment of the effect of PET algorithm on the simulation of
woody encroachment, and may apply to the subset of naturally
vegetated lands that remain unburned due to successful fire
suppression or chance, as influenced by landscape fragmentation.
The second and third scenarios are indicative of the possible
outcomes of minimal vs. more aggressive use of fire to maintain
grasslands, and illustrate how fire and PET interact to affect the
course of woody encroachment simulated by MC1.

3. Results and discussion

3.1. Comparison of historical PET estimates

The 31-year mean PET values for the whole NGP derived by the
new and standard PET algorithms (PETnew and PETstandard,
respectively) and the PenPan model are similar to each other,
i.e., their ratios are close to one (Table 3). The correlation between
annual values per grid cell for PETnew vs. PenPan is higher than the
correlation for PETstandard vs. PenPan and the corresponding
regression slope for the former comparison is also closer to 1
than for the latter (Table 3). Annual PET is instructive for evaluating
the algorithms because it integrates over the seasonal cycle and is
representative of the evaporative demand faced by plants, as PET is
highest during the warmer, brighter months of the growing season.
Fig. 4. Comparison of mean (1979–2009) annual PET generated by the new and
standard MC1 algorithms, plotted against that of the PenPan model for each grid cell
of elevation <1500 m.
The 31-year mean annual PET values per grid cell derived with
our algorithms show slightly lower correlations with those of the
PenPan model than for the annual values (Table 3, Fig. 4). However,
annual PET for the whole NGP shows similar year-to-year variation
for all three methods, with high agreement between our new
algorithm and the PenPan model (Fig. 5, Table 3). All three
approaches project particularly high PET for 1988, one of the most
severe drought years of the 20th century for the NGP (Sud et al.,
2003). The 31-year trends in PET for the NGP are relatively similar
among methods and not significantly different from zero
(regression slope = 0.14 �1.57, �1.45 �1.35 and �1.18 � 1.81 mm
yr�1, for PenPan PETnew and PETstandard, respectively, derived from
the data of Fig. 5).

Thus, the new algorithm, involving extraterrestrial radiation
plus monthly means of maximum and minimum temperature and
dewpoint temperature, captures the year-to-year variation in PET,
as calculated with the more physically rigorous PenPan model. A
caveat to this conclusion is that it applies to a region within the
conterminous US where temperature determined most of the
variability in the annual pan evaporation projected by the PenPan
model (Fig. 7 in Hobbins et al., 2012).

3.2. Comparison of future PET estimates

The spatially averaged annual PET values projected by the new
vs. standard algorithms differed only slightly at the beginning of
the 21st century, but diverged substantially by the end of this
century for all three future climates (Table 4, Fig. 6). This
divergence is associated with the 131% increase in atmospheric
CO2 concentration over the 21st century under the A2 emissions
scenario used to drive the GCMs. Substantially smaller increases in
PET were calculated with the new algorithm throughout the NGP
(Figs. 7 and 8). For the milder CSIRO climate, the new algorithm
produced 1/4 of the PET increase of the standard one (Table 4). The
Fig. 5. Comparison of annual PET averaged over Northern Great Plains grid cells of
elevation <1500 m.



Table 4
Comparison of projected mean annual PET over the NGP domain for 2081–2100 for three future climates (2081–2099 for Hadley). The percent increase is in comparison to the
mean historical PET for 1981–2000 derived with the same method as used for the future projection. The range (in parentheses) gives the minimum and maximum percent
increase for individual grid cells.

Future climate PETstandard (mm/yr) Percent increase (range) PETnew (mm/yr) Percent increase (range)

CSIRO 1682 31.5 (25.2 � 43.0) 1284 7.3 (2.7 � 11.3)
Hadley 2160 68.9 (55.8 � 81.5) 1619 35.3 (23.7 � 51.8)
MIROC 2168 69.5 (56.6 � 79.7) 1737 45.1 (27.6 � 63.8)
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new algorithm projected half of the increase of the standard one
for the hot Hadley climate, and 2/3 of the increase of the standard
one for the increasingly hot and dry MIROC climate (Table 4).

These results highlight the substantial differences that exist
between the three climates (Table 2). The average temperature
increase over the 21st century for CSIRO is slightly less than 2/3 of
that for Hadley and MIROC. This moderate increase in temperature
coupled with an increase in relative humidity (RH) yields only a
minor increase in PET, as calculated with the new algorithm.
The late 21st century MIROC climate is only slightly warmer than
the Hadley climate, but the differences in RH between the two are
substantial. The new algorithm includes vapor pressure in the
aerodynamic term of the Penman equation rather than inferring it
from the temperature regime, as done in the standard algorithm.
This change in the calculation of PET results in greater differentia-
tion of the projected PET rise associated with the three future
climates.

Our projections with the new algorithm are similar to those of
Scheff (2011) who applied the Penman–Monteith equation to
climate output from the MIROC3.2 medres GCM (A2 emissions
scenario) that also included wind speeds and the daily energy
fluxes contributing to net radiation. For the GCM grid cells
overlying our NGP grid, Scheff (2011) reported PET increases of
approximately 25 to 53% (mean of 38%), for the period of
2081–2100 vs. 1981–2000, similar to our mean increase of 45%
Fig. 6. Mean annual PET averaged over the NGP grid, as calculated by the new vs.
standard algorithms for three downscaled GCM-derived future climates.
for the same GCM and emissions scenario (Table 4). The recent
analysis of Scheff and Frierson (2014), based on 3-h resolution
outputs of temperature, vapor pressure, wind, and radiation from
13 CMIP5 GCMs, yielded mean PET increases of 17.8% and 24.4% for
lands at 15–40� N and 40–80� N, respectively, for the period of
2080–2099 vs. 1980–1999. Feng and Fu (2013) projected increases
in PET of 15–20% over most of our NGP grid for 2071–2100 relative
to 1961–1990, based on CMIP5 data from 27 GCMs under the
RCP85 scenario.

Modest increases in PET with increasing temperature were also
calculated by Morgan et al. (2011) using the American Society of
Civil Engineers standardized evapotranspiration equation, driven
by observed weather and solar radiation data from their
experimental site adjacent to Casper WY, which is west of the
south-central corner of our grid (Fig. 1). For the April 1–Oct
16 growing season over three successive years, they calculated an
increase in PET of 2.6% per �C increase in temperature above
ambient with ambient relative humidity, and an increase of 4.9%
per degree increase in temperature with ambient vapor pressure,
i.e., declining relative humidity with increasing temperature above
ambient. These temperature sensitivities of PET are substantially
lower than those calculated by the widely used empirical
algorithm of Hamon (1961). For a 1� increase in temperature
the Hamon method projects an increase in PET of 6.4%; for a 6�

increase, 45%, i.e., 7.5% per degree, the larger value deriving from
the exponential form of the Hamon algorithm.
Fig. 7. PET calculated with the standard (left-hand side) and new (right-hand side)
algorithms for the NGP during the historical period (1981–2000 PRISM climate) and
the three future climates for 2081–2100 (2081–2099 for Hadley). (See Fig. 1 for
geographic location of the grid.)



Fig. 8. Percent increase in PET across the NGP for 2081–2100 future climates vs.
1981–2000 historical climate calculated with the standard and new algorithms.
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The mean PET and temperature values for our 100-year
comparison (Tables 2 and 4) yield overall PET increases as
calculated with the new algorithm of 1.9% (CSIRO), 5.9% (Hadley)
and 6.8% (MIROC) per �C increase in mean temperature. These
sensitivities are associated with an increase in mean RH (CSIRO), a
Fig. 9. Spatially averaged annual live aboveground tree C with no future fires,
simulated by MC1 for the NGP with the new and standard PET algorithms for three
future climates.
small decrease in RH (Hadley) and a larger decrease in RH with a
small increase in mean vapor pressure (MIROC)–sensitivities
unlikely to be captured by empirical algorithms for PET based
only on temperature. Furthermore, these increases in future PET,
achieved by linking net radiation to extraterrestrial radiation, are
in better agreement with more rigorous calculations of PET from
GCMs or temperature-adjusted ambient weather data than
estimates derived from temperature alone.

3.3. Influence of PET on projections of woody encroachment in the
Northern Great Plains

After initializing vegetation cover to grassland, the MC1 model
simulates an increase in woody biomass that becomes increasingly
apparent in the last several decades of the 21st century, for the
no-fire case (Fig. 9). This slow appearance of woody plants is due to
the very low initial woody biomass and low initial invasion
capacity, as parametrized for the NGP. The overall increase and the
difference in increase between the standard and new PET
algorithms are greatest for the CSIRO climate and least for the
MIROC climate (Fig. 9).

Large spatial variation occurs in the simulated progression of
woody encroachment across the NGP for each of the six
PET �climate cases. This pattern is indicated by the woody
biomass attained in the 2090s for the no-fire case (Fig. 10). For
each future climate, tree biomass is high near the eastern
boundary, where precipitation is generally highest (Fig. 3, left
column). In nearly all cases tree biomass is quite low in
northeastern and north-central Montana (northwestern quarter
of the study region, Fig. 10), where precipitation tends to be low
and PET is relatively high (Figs. 3 and 7). This more-or-less treeless
area is substantially smaller for the new PET algorithm than the
standard one for each of the three future climates and scarcely
exists for the milder CSIRO climate when the new PET algorithm is
used. Thus, the overestimation of PET by the standard algorithm
leads to the simulation of more extreme drought conditions and
hence the underestimation of woody encroachment rates.
Fig. 10. Mean aboveground live tree C in 2091–2100 simulated by MC1 when fire is
turned off during the 21st century for three downscaled GCM-generated future
climates. Simulations on the left were generated with the standard MC1 PET
algorithm (PETstandard) and on the right with the new algorithm (PETnew). Note that
variables are averaged over 2091–2099 for Hadley.



Fig. 12. Mean aboveground live-tree C in 2091–2100 simulated by MC1 with fall
burns every 10 years during the 21st century for three future climates. Simulations
on the left generated with the standard MC1 PET algorithm (PETstandard) and on the
right with the new algorithm (PETnew).
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We simulated two possible fire management strategies and in
both cases found strong differentiation between areas of high vs.
low woody encroachment, particularly with frequent fall fires,
where grassland is maintained across most of the NGP in all cases
(Figs. 11 and 12). This pattern occurs because trees are modeled to
become more resistant to simulated fire effects as they increase in
size. Frequent fires and/or unfavorable climates for growth
(drought in the NGP) yield low tree biomass and hence short
trees at the time of first fire, resulting in crown fires, which greatly
reduce simulated tree biomass. With infrequent fires and/or
favorable climates for growth, fire mortality is lower and woody
encroachment is promoted.

With infrequent spring burns, the area of low woody
encroachment increases substantially with the aridity of the
future climate, as indicated by comparison of results for CSIRO
(warm and moist), Hadley (hot) and MIROC (hot and dry) (Fig. 11).
This behavior is caused by the decrease in tree biomass
accumulation rates over this aridity gradient in the absence of
fire (Figs. 9 and 10) and to some extent by the increase in fire
intensity associated with declining fuel moisture content at time of
fire. Even with frequent fires, trees in the relatively cool and moist
NE corner of the NGP escape fire, but this area of woody
encroachment also decreases with increasing aridity of the future
climate (Fig. 12). Frequent crown fires are simulated across the rest
of the NGP, thereby maintaining grasslands.

Forallclimates and firescenarios, greaterwoodyencroachmentis
simulated with the new PETalgorithm thanwith the standard one, as
expected, because the new algorithm simulates less water limitation
of growth than does the standard one. This result derives from the
fact that the scalar that modifies production as a function of water
availability is proportional to (monthly plant available water)/
(monthly PET), when this ratio is less than 0.8. The difference in
woody encroachment derived with the two PET algorithms is of the
same magnitudeasthe differencebetweenthatsimulatedforHadley
and the drier MIROC climate with the same PET algorithm across all
fire management scenarios (Figs. 10–12). Although the relative
effects for one future climate vs. another are similar for the two
algorithms, there are substantial differences in the absolute effects
simulated for a given future climate. For future climates where
Fig. 11. Mean aboveground live tree C in 2091–2100 simulated by MC1 with spring
burns every 40 years during the 21st century for three future climates. Simulations
on the left generated with the standard MC1 PET algorithm (PETstandard) and on the
right with the new algorithm
precipitation and relative humidity remain the same or increase
(as was the case for CSIRO) use of the new vs. standard algorithm
could result in the projection of increasing rather than decreasing
water resources. However, the differences in projected woody
encroachment associated with differences in future climates and/or
PET algorithm are modest compared to the differences associated
with changes in fire frequency (Figs. 10–12). This finding is
in accordance with Archer et al.’s (1995) conclusion that changes
in land use have been the primary drivers of woody encroachment in
the North American Great Plains.

3.4. Uncertainties

Uncertainties in our projections of vegetation include the fact
that MC1 does not simulate enhanced tree mortality due to severe
drought or drought–insect–pathogen interactions. In the South-
western U.S., where recent episodes of tree mortality have been
attributed in part to climate change, drought severity is projected
to routinely exceed that of current once-per-thousand-year
droughts by the 2050s (Williams et al., 2013). This projection is
based on an empirical forest drought–stress index that involves
cold-season precipitation and warm season vapor pressure deficit,
but not PET. However, Williams et al. (2013) do not include
increases in productivity and/or water use efficiency that may
accrue from elevated CO2 (Keenan et al., 2013; Silva and Anand,
2013), effects that are included in MC1. Thus, the improvement in
the PET algorithm addressed here is only one of a number of factors
requiring attention in ecological assessments of climate change
impacts. For example, the effect of changes in fire regimes, both
historically and in the future should also be included in projections
of future vegetation dynamics (King et al., 2013a).

4. Conclusions

We developed a new PET algorithm that links surface shortwave
insolation to extraterrestrial radiation via the atmospheric
transmittance and then calculates net radiation as a function of
shortwave insolation, temperature, and transmittance (Eq. (4) and
(5)). This new estimate of net radiation was then used in place of an
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estimate based solely on temperature in the Penman equation for
PET. Simulation results showed that projected woody expansion
across the NGP was substantially increased by this improved
calculation of PET.

Our relation between transmittance and diurnal temperature
range was determined for the NGP and further assessments for
other regions are needed to confirm our results on a larger scale.
This relation may also shift with greenhouse gas-driven warming,
as may the relation between net radiation and shortwave
insolation. Both of these possibilities could be assessed with
analyses of GCM-derived radiation fields that are available at 3-h
resolution from the most recent phase of the Coupled Model
Intercomparison Project (CMIP5, Taylor et al., 2012). The full array
of CMIP5 outputs could also be used to compute PET, as done by
Scheff and Frierson (2014), for comparison with that generated by
our algorithm. Such was not the goal of our study, which addressed
a major bias in the use of temperature-based empirical estimates
of PET, as shown by improved agreement with future PET
projections based on more rigorous methods (Morgan et al.,
2011; Scheff 2011; Scheff and Frierson 2014).

We found increasing biases in our temperature-based PET
estimates that become noticeable after �2025, as compared to
those of our new algorithm (Fig. 6). The substantive differences in
projected woody encroachment of the NGP by the end of the 21st
century with our new vs. standard MC1 PET algorithm (Figs. 10–12)
imply that algorithms based solely on temperature should be
avoided for long-term ecological projections of climate change
effects. The new algorithm still predicts substantial future drying
for the Hadley and MIROC climates, as indicated by decreases in the
ratio of annual precipitation to PET. For CSIRO this ratio decreases
slightly for the standard algorithm, but increases for the new
algorithm (suggesting a wetter future), as determined from the
percent changes in precipitation and PET for 2081–2100 vs.
1981–2000 (Tables 2 and 4). On average, the projected trends with
the new PET algorithm are consistent with the moderate level of
future drying projected by Feng and Fu (2013) for the NGP based on
CMIP5 data from 27 GCMs for the RCP85 scenario.
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