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Executive Summary 
Conservation Biology Institute (CBI) tested whether using freely available, high-resolution, 
multi-spectral satellite imagery from the European Space Agency Remote Sensing Program 
could help provide accurate and updateable habitat quality maps for the endangered Stephens’ 
kangaroo rat (SKR) and perhaps other species. Results demonstrate that this new technology 
provides high-quality data with great potential to improve adaptive management and monitoring 
for SKR and other at-risk species. The available data (10 and 20m spatial resolution, updated 
every five days, covering a wide electromagnetic spectrum) provide more nuanced and rapidly 
updateable information compared to more traditional geospatial datasets that are often too 
imprecise or too unreliably updated for useful habitat tracking.  
 
Unfortunately, the process of producing useful predictive variables from this multi-spectral 
dataset was extremely computer intensive and therefore costly. Luckily, the newly available 
Google Earth Engine (GEE), which permits non-profit NGOs to use Google’s super computers 
and cloud storage capacity, could be used to greatly increase efficiency and decrease costs of 
producing high-resolution habitat variables. We recommend that partners vested in rare species 
conservation pursue this potential to improve the efficiency of management and monitoring 
programs, starting with SKR.  
 
Based on our range-wide assessment of SKR habitat quality, we specifically recommend using 
GEE’s platform to reduce costs and provide more spatially and temporally fine-scale maps; 
creating ecoregional SKR habitat models to account for regional variability in environmental 
conditions and better support reserve management and monitoring efforts; using these maps as 
foundations for an adaptive management and monitoring program and to update the species’ 
recovery plan; and expanding this approach to address a wide array of other at-risk species. For 
SKR conservation and recovery planning, we also recommend coupling these new, updateable 
habitat models with population genetics and demography data provided by the San Diego Zoo 
Institute for Conservation Research to prioritize SKR recovery actions, such as improving 
habitat connectivity amongst reserves or translocating SKR individuals to sustain genetic 
diversity.  
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Introduction 
The Stephens’ kangaroo rat (SKR; Dipodomys stephensi) is a rare mammal of grasslands and 
open scrub habitats in southern California. Since its listing under both the California (1971) and 
US (1988) Endangered Species Acts, intensive conservation planning efforts have established 
numerous ecological reserves in western Riverside County and northern San Diego County. 
Unfortunately, these scattered reserves have not been consistently managed and monitored, in 
part because it has been difficult to map and track SKR habitat suitability in a consistent, 
accurate way. Traditional GIS variables, such as vegetation and soil types, are generally neither 
nuanced nor accurate enough to reflect the on-ground conditions that SKR need, and they are 
not consistently updated to allow for tracking of habitat changes over time. This report presents 
new range-wide habitat maps for SKR developed using recently available and updateable 
satellite imagery from the European Space Agency’s Remote Sensing Satellite-2 Program, and 
makes recommendations for additional steps for using this system for SKR conservation and 
recovery planning. 

Background 
 
The US Fish and Wildlife Service (USFWS) produced a Draft Endangered Species Recovery 
Plan for SKR in 1997 (USFWS 1997) but the plan was never finalized.  Since then, scientists 
and managers have learned much more about the species, its environment, and its 
conservation needs (Spencer et al. 2017). Meanwhile, technological advances promise new and 
better ways of mapping and monitoring habitat conditions at fine resolution in space and time. 
 
During 2017-18 two agencies with primary responsibility for SKR conservation and recovery-- 
USFWS and Riverside County Habitat Conservation Agency (RCHCA)--organized a series of 
meetings of SKR experts and reserve managers to strategize how to develop a more 
coordinated, effective, and scientifically defensible approach to managing and monitoring SKR 
and supporting recovery planning. The team of experts determined that a key foundational step 
toward these goals was to develop a comprehensive and accurate habitat suitability map for the 
species, especially one that could be updated regularly.  
 
Meanwhile, members of the team at the San Diego Zoo’s Institute for Conservation Research 
(ICR) have been performing population genetics analyses across the species range. These 
results are critical to understanding how the widely scattered SKR populations may or may not 
be interacting as a larger metapopulation that can sustain demographic and genetic integrity of 
the species.  
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Summary of Results and Recommendations 
The range-wide habitat maps produced using Sentinel-2 multispectral imagery appear 
promising as a basis for improved SKR management, monitoring, and recovery planning, 
although the process for deriving imagery-based variables was computationally very intensive 
and costly. Models using Sentinel-2-based variables accurately predict and map SKR habitat 
value, and could be further refined to be more useful (such as by customizing models for 
individual reserve areas). The costs of using this system could be substantially reduced by 
using an automated approach to variable creation and model updating by taking advantage of 
the freely available (to non-profit organizations) Google Earth Engine (GEE). GEE is a newly 
available system that allows users to rapidly customize and map any number of spatial variables 
from a vast array of data using Google’s super computers and cloud storage, including from 
Sentinel-2 and other sources.  
 
Based on the results of the habitat mapping exercise summarized below, we recommend the 
following additional tasks to refine the methods and use them to support SKR conservation and 
recovery. We further suggest that similar methods could benefit numerous other species of 
conservation concern. 
 

1. Utilize Google Earth Engine (GEE) to access more up-to-date imagery, speed up data 
processing, create predictors at higher resolution, and reduce costs of updating data and 
maps.  

2. Subdivide the SKR’s geographic range into ecologically valid, smaller areas to improve 
model accuracy and utility at more localized scales (i.e., to account for varying climate 
and other environmental conditions between ecoregions, such as coastal versus inland 
conditions).  

3. Use the new habitat models, connectivity analyses, population models, ICR’s genetic 
results, or other information to identify where management interventions--such as 
improving landscape connectivity or translocating SKR between reserves--may aid 
species conservation and recovery.  

4. Develop an integrated adaptive management and monitoring system based on the new 
and updatable habitat models to support species recovery.  

5. Expand the use of this modeling approach to create fine-scale, updateable habitat maps 
for other species of conservation concern. 
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Methods 
CBI tested whether new and freely available imagery from the European Space Agency’s 
Sentinel-2 satellite program  could benefit habitat suitability modeling for SKR, and perhaps by 

1

extension, other species of conservation concern. The general process was to download 
imagery, use it to create potential predictor variables for SKR, and use MaxEnt (a presence-only 
habitat modeling program; Philips et al. 2006) to model SKR habitat value using SKR 
observation data provided by USFWS and a combination of imagery-derived and other 
environmental variables. The modeling region was defined by expanding the official species 
geographic range provided by USFWS (2018) by adding adjacent areas where SKR detections 
fell very near or outside the range boundaries, buffered by 4 km (Figure 1). 

Satellite Imagery and Variable Creation 
We created a wide array of potential predictor variables from multispectral imagery available 
through the Sentinel-2 program as well as from more “traditional” GIS data layers (e.g., 
elevation, slope, vegetation type). 

Satellite-derived Variables 
Data from the European Space Agency's multispectral Sentinel-2 satellite program were 
downloaded for the study area for 2017. Sentinel-2 data has relatively high spectral and spatial 
resolution, with 13 electromagnetic spectral bands that are particularly relevant to detecting 
changes in vegetation and land cover. Images are captured around the globe at 5-day intervals, 
allowing selection of specific dates or seasons for an area of interest. Pixel resolution ranges 
from 10 m to 60 m depending on spectral band.  
 
Each image was atmospherically corrected with Sen2cor software to normalize reflectance 
values and account for differences in sun angle and atmospheric conditions when images were 
taken. During this process, product level 1C Top-Of-Atmosphere input data were processed to 
level 2A Bottom-Of-Atmosphere reflectance images. Individual satellite images were merged 
using Sen2Mosaic software to create continuous, cloud-free coverage across the study area for 
the months of April and September 2017. The mosaicking process consisted of systematically 
selecting the most similar and cloud-free pixels across each time period. In total, seamless, 
cloud-free mosaics for all 13 Sentinel-2 spectral bands were created for each month at 20m 
spatial resolution. All processing of multispectral indices was carried out using ESRI ArcGIS 
software and custom Python scripts programmed by CBI.  
 
 

1 https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Data_products 
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Figure 1. Modeling extent created by adding SKR detection points, buffered by 4km, falling near 
or outside the boundary of the USFWS (2018) geographic range for SKR.
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After reviewing available satellite data and considering how imagery could best capture habitat 
characteristics relevant to SKR, we selected 23 indices from those available (Table 1) and two 
seasons of particular biological relevance for SKR:  

● April = High vegetation greenness and moistness and low soil visibility. 
● September = Low vegetation greenness and moistness and high soil visibility. 

 
Field observations reveal that SKR are strongly associated with forb-dominated habitats that 
green up, flower, and set seed in spring (with April generally having maximum vegetation 
greenness and moistness), but then rapidly dry out and disarticulate over summer, leaving 
abundant openness and bare soil conditions that are required by kangaroo rats. The SKR’s diet 
is dominated by seeds produced by annual forbs, but they require very open habitats and bare 
surface soil during most of the year to accommodate their highly evolved modes of locomotion 
(e.g., bounding), communications (e.g., “sand-bathing”) and other peculiarities of their ecology. 
 
Each spectral  index was calculated for each season of interest (April and September) along 
with the difference in the index between seasons (for example, to capture the change in 
vegetation greenness or moistness from April to September). Thus, 69 (23 x 3) total indices 
were calculated and used as potential predictor variables in habitat models. 
 
Raw data were downloaded from Copernicus Open Access Data Hub and processed on a 
custom Linux server built to handle imagery datasets of extremely large size. Nevertheless, 
preprocessing of the satellite data took several months to complete at 20m resolution (10m 
resolution proved computationally prohibitive).  
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Table 1. Multispectral indices derived from Sentinel-2 satellite data for the months of April and 
September for the SKR study area. 
 

Index Name Abbreviation Index Type 

Simple Normalized Difference Vegetation Index NDVI Vegetation  

Red Edge Normalized Difference Vegetation Index 

Variation #1 RENDVI1 Vegetation  

Red Edge Normalized Difference Vegetation Index 

Variation #2 RENDVI2 Vegetation  

Red Edge Normalized Difference Vegetation Index 

Variation #3 RENDVI3 Vegetation  

Normalized Difference Red Edge Index Variation #1 NDRE1 Vegetation  

Normalized Difference Red Edge Index Variation #2 NDRE2 Vegetation 

Normalized Difference Red Edge Index Variation #3 NDRE3 Vegetation 

Enhanced Vegetation Index EVI Vegetation 

Anthocyanin Reflectance Index ARI1 Vegetation  

Modified Chlorophyll Absorption in Reflectance Index MCARI Vegetation 

Tasselled Cap Wetness TCWET Vegetation 

Tasselled Cap Vegetation TCVEG Vegetation 

Tasselled Cap Brightness TCBRI 
Vegetation and 

soil 

Tasselled Cap MSS Green Vegetation TCMSSGRN Vegetation 

Tasselled Cap MSS Soil Brightness TCMSSBRI 
Vegetation and 

soil 

Bare Soil Index BSI Soil 

Normalized Difference Texture Index NDTeI Soil  

Normalized Difference Sand Dune Index NDSDI Soil 

Clay Minerals Ratio CMR Soil  

Misra Soil Brightness Index MSBI Soil 

Topsoil Grain Size Index TGSI Soil  

Soil Adjusted Vegetation Index SAVI Soil 

Soil Composition Index SCI Soil  
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Traditional GIS Variables 
In addition to variables derived from satellite imagery, we derived  an array of more traditional 

GIS variables that may be important to SKR habitat selection, including climatic, soil, 

development, hydrologic, and vegetation variables (Table 2). This allowed us to compare 

models using one or the other variable sources as well as to combine satellite-derived variables 

with other variables in a model. 

 

Table 2. Other GIS predictor variables derived for the SKR study area 

 

Variable Type Variable Name Source Resolution 

Soils Drainage Class gSSURGO, STATSGO 30m 

Soils Bedrock Depth gSSURGO, STATSGO 30m 

Soils Percent Sand gSSURGO, STATSGO 30m 

Soils Percent Silt gSSURGO, STATSGO 30m 

Soils Percent Clay gSSURGO, STATSGO 30m 

Climate Average Spring (March, April, May; 
1981-2010) Precipitation 

CA BCM 270m 

Climate Average March Precipitation 
(1981-2010) 

CA BCM 270m 

Topography Elevation USGS NED 10m 

Topography Slope USGS NED 10m 

Vegetation Annual Grassland USGS LANDFIRE EVT 30m 

Vegetation Herbaceous Cover USGS LANDFIRE EVC 30m 

Development Night Light (2017) NOAA VIIRS 375m 

Development Distance to Development NLCD 2011 30m 

Development Distance to Roads  TIGER 20m 

Development Distance to Roads 
(Primary/Secondary Only) 

TIGER 20m 

Hydrology Distance to Streams  USGS NHD 1:12,000-1:24,000 

Hydrology Distance to Streams (Ephemeral, 
Intermittent, Seasonal Only) 

USGS NHD 1:12,000-1:24,000 
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Habitat Value Modeling 
We calculated and mapped habitat values using MaxEnt (Phillips et al. 2006), environmental 

variables described above, and species detection points provided by USFWS. MaxEnt compares 

conditions at species detection points with those at a sample of random background points to 

create a prediction of relative habitat suitability based on environmental variables and their 

interactions. 

 

USFWS provided their most up-to-date SKR occurrence database, which includes more than 

5,000 species detections from 1990 through 2018, mostly from live-trapping records. The full 

set of points was “filtered” to remove (1) low accuracy (>320m accuracy) detections or those 

not providing accuracy estimates (“non-specific area”); and (2) older detections in locations 

currently mapped as “developed” (i.e., points in habitats that no longer exist). The remaining 

points were next “thinned” to limit one detection within a single 20m grid cell. This thinning 

process reduces spatial bias due to varying sampling intensity amongst locations--for example, 

where repeated captures occur in a single locality that has been surveyed more frequently than 

others.  

 

The filtering and thinning procedures reduced the full data set of >5,000 to 1255 recent (since 

1990) independent sample points for modeling. This final set was subdivided into “training” 

points (70%) used to develop the statistical models and “testing” points (30%) used to evaluate 

model accuracy. 

 

We also used a limited set of negative trapline and grid point data provided by USFWS for 

model testing. We converted the trapline data from lines to points, merged those with the grid 

point data, and clipped to our model boundary, leaving 441 points. We thinned the data using 

the same methods as for the detection points so that only one non-detection fell within a single 

20m grid cell. We took a random sample equal to the sample size of the reserved testing 

detection points (n = 376).  

 

MaxEnt models were run using MaxEnt default parameters except that we used 10-fold 

cross-validated replication and linear, quadratic, and product feature types to produce 

smoother response curves (Santos et al. 2017) and because interactions among predictors are 

common and species responses to ecological gradients are frequently nonlinear.  
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Our modeling process used the following general steps:  

 

1. Variable selection. This involved testing each potential predictor variable independently 

at multiple scales--from 20m (roughly female SKR home range size) up to about 200m 

(specifically, variables were averaged across circular moving windows of 20, 40, 60, 100, 

and 200m radii). For each variable, we selected the scale that produced the highest 

10-fold cross-validated mean AUC . For each Sentinel index, we selected the season 
2

(April, September, or the difference between April and September) that produced the 

highest 10-fold cross-validated mean AUC. We also tested for variable collinearity 

(correlations between variables) to understand variable interactions and avoid using 

highly correlated variables in multivariate models (using ENMTools version 1.3 and 

defining correlated as |r| > 0.7).  

2. Multivariate modeling. All non-correlated variables (at the best resolution and season 

from step 1) were next entered into MaxEnt, which generates a multivariate model by 

selecting and combining (with appropriate weighting) those variables that together best 

fit the SKR training data.  

3. Model pruning. The “full” multivariate model thus created was then “pruned” to a more 

parsimonious model by removing variables that least contribute to model predictive 

power. The pruning process stops when removing another variable would significantly 

reduce model predictive power (as determined by mean model training gain  and where 

significance is identified by lack of overlap in model 95% confidence intervals). 

4. Model tuning. To decrease model overfitting, we tuned our selected model by varying 

MaxEnt’s regularization parameter to constrain model complexity (Anderson and 

Gonzalez 2011, Merow et al. 2013, Radosavljevic and Anderson 2014, Warren et al. 

2014). We varied the parameter from 0 to 5 in increments of 0.5 (default = 1), and used 

ENMTools Model Selection function to calculate AIC (Akaike information criterion) for 

each (Warren and Seifert 2011). We selected as the best model the one with the lowest 

AIC score. 

5. Model testing. Models created using the 80% SKR training data were next evaluated for 

predictive power  with the reserved 20% test detection and sampled non-detection data 

using threshold-dependent metrics (sensitivity, specificity, balanced accuracy, true skill 

statistic [TSS], and Cohen’s kappa) and the maximum sum of training sensitivity and 

specificity threshold, which optimizes discrimination between species presence and 

absence (Liu et al. 2013). We also used the Maxent cross-validation functionality and 

threshold-independent metrics to evaluate model discriminatory ability (AUC) and 

2 Area Under the Receiver Operating Characteristic (ROC) curve, a threshold-independent 
assessment of model discriminatory ability (Fielding and Bell 1997). 
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model overfitting (mean 10% test omission rate, difference between training and testing 

AUC).  

 

We used this same step-wise process to produce several different multivariate models by 

drawing from different pools of potential predictive variables: (1) only Sentinel-2-derived 

variables; (2) only “traditional” GIS variables; and (3) both Sentinel-2 and traditional variables.  
 

In addition, we investigated how removing some variables from models affected habitat value 

maps and statistics to better understand model behavior and to inform future efforts. For 

example, we systematically removed (1) some variables for which we had reason to question 

biological validity for SKR at the range-wide scale (e.g., distance to roads, distance to streams, 

and night light); (2), to compare vegetation indices derived from satellite imagery to more 

traditional vegetation variables; and (3) to remove soil variables from gSSURGO and STATSGO 

that produced idiosyncratic maps when averaged over the scales of interest. We determined 

that some variables are likely to have effects on SKR habitat selection that vary among local 

areas at finer scales than available data.  For example, SKR are often found in close association 

with paved but lightly traveled roads, but they may suffer high mortality or avoid roads in other 

areas having greater traffic volume. And, although high night-light levels are known to suppress 

SKR activities within about 50 m of bright lights (e.g., flood lights; D. Shier, unpublished data), 

available night-light data are only available at 375m resolution, and therefore may not be 

meaningful in mapping SKR habitat across the entire range. In other words, including night-light 

values in an SKR range-wide model may not be warranted even though it may be very 

meaningful in understanding SKR habitat use in particular reserve areas. 
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Results and Discussion 
Models incorporating Sentinel-2-derived variables performed well across the species range. The 

final “best” model used a combination of imagery-derived and traditional GIS variables. The 

computing and analysis time required to derive the fine-scale imagery variables was substantial, 

representing a significant cost to the project. However, this cost could be greatly ameliorated 

with new techniques made possible by the GEE platform, which allows remote sensing 

scientists to use Google’s super computers and cloud storage to reduce data storage and 

processing costs.  The modeling results, their implications, and recommendations for refining 

and using the models are detailed below.  

 

Mapped differences between the best full model and the reduced variable model are subtle, 

and together suggest that more refined local models may better support preserve management 

and monitoring efforts by accounting for geographic differences in how SKR may be selecting 

habitat conditions. Both models, while tightly fitted to known SKR distributions, seem to 

over-predict SKR occurrence in a few locations, which might be explained by non-habitat threat 

factors (e.g., land management actions on non-reserve areas). 

Full Range-Wide Model 
Following the variable selection and pruning and tuning processes, the selected “best” model 

used 12 predictors across 3 scales and included a mix of 5 Sentinel-derived indices and 7 

traditional GIS variables (Figure 2, Table 3). The model is most strongly influenced by slope, 

Tasselled Cap Wetness (index of vegetation moisture content), and proportion developed. 

Traditional GIS variables account for 70% of the total predictor importance, with 

Sentinel-derived predictors making up the remaining 30%. This model uses a regularization 

parameter of 4.0 and has good discriminatory ability and fair accuracy, with mean test AUC of 

0.891, balanced accuracy of 0.680, TSS of 0.359, and kappa of 0.356 (Figure 3, Table 4).  

 

The model predicts some habitat value in areas not known to be occupied by SKR, such as 

grassland areas west of Temecula. It also shows some areas of highly fragmented potential 

habitat that is not currently known to be occupied by SKR (e.g, in northern San Diego County). 

Most of these predicted but not known-to-be-occupied habitats are not managed as SKR or 

multi-species reserve areas. It is possible that threat factors not directly related to on-site 

habitat value have excluded SKR from some potentially suitable areas (e.g., rodenticides or 

mechanical discing to improve livestock forage). 

Page 14 



Reduced Variable Model 
The reduced variable model has 10 predictors across 3 scales and includes a mix of 6 

Sentinel-derived indices and 4 traditional GIS variables (Figure 4, Table 3). The dominant 

predictors are the same as in the full model (slope, Tasselled Cap Wetness, and proportion 

developed). Traditional GIS variables account for 66% of the total predictor importance, with 

Sentinel-derived predictors making up the remaining 34%. This model uses a regularization 

parameter of 4.5 and also has good discriminatory ability and fair accuracy, with mean test AUC 

of 0.885, balanced accuracy of 0.647, TSS of 0.295, and kappa of 0.291 (Figure 5, Table 4). 

 

This model also predicts suitable habitat in some areas not known to be occupied by SKR, which 

again could be due to other threat factors, such as habitat fragmentation, discing, or use of 

rodenticides. 
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Figure 2. Modeled SKR habitat suitability using Sentinel-2 and other GIS variables (Full 
range-wide model). 
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Table 3. Predictor permutation importance for the full, range-wide model and the reduce 
variable model. 

Predictor (moving window radius) 
Full 
model 

Reduced 
variable model 

Slope (60m) 38.2 38.2 

Tasselled Cap Wetness, September (60m) 16.8 21.5 

Proportion Developed (40m) 15.1 16.7 

Topsoil Grain Size Index, September (60m) 7.9 5.9 

Elevation (no moving window) 5.1 5.3 

Spring Precipitation (no moving window) 4.8 6.2 

Normalized Difference Red Edge Index Variation #3, April 
(60m) 

3.2 1.9 

Night Light (no moving window) 2.4 NA 

Distance to Primary/Secondary Roads (no moving window) 2.3 NA 

Distance to Streams (Ephemeral, Intermittent, Seasonal 
Only; no moving window) 

1.9 NA 

Normalized Difference Sand Dune Index, April - September 
(60m) 

1.6 1.9 

Normalized Difference Texture Index, April - September 
(60m) 

0.8 NA 

Modified Chlorophyll Absorption in Reflectance Index,  April - 
September (60m) 

NA 1.3 

Tasselled Cap Brightness,  April - September (60m) NA 1.1 
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Figure 3. Full model thresholded into suitable versus unsuitable habitat using the maximum 
sum of sensitivity and specificity criterion. 
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Table 4. Evaluation metrics, full range-wide model and reduced variable model. 
 

Evaluation Metric Full model Reduced variable model 

Mean Testing AUC 0.891 0.885 

Mean Training AUC 0.894 0.887 

Mean |Train-Test| AUC 0.012 0.011 

Mean 10% Test Omission  0.108 0.105 

Balanced Accuracy 0.680 0.647 

Sensitivity (True Positive Rate) 0.822 0.827 

Specificity (True Negative Rate) 0.538 0.468 

Precision (Positive Predictive Value) 0.626 0.594 

TSS 0.359 0.295 

Cohen’s kappa 0.356 0.291 
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Figure 4. Reduced variable model.
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Figure 5. Reduced variable  model thresholded into suitable versus unsuitable habitat using the 
maximum sum of sensitivity and specificity criterion. 
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Recommendations 

Google Earth Engine 
Traditional methods of managing and processing satellite imagery (on a local server and 
computers, as done here), can be extremely time- and computer-intensive. Acquiring and 
moving terabytes of data is slow, and analyses to create variables (e.g., habitat indices based 
on various spectral wavelengths) can take weeks to run. Google’s Earth Engine (GEE) is a new 
platform for doing remote sensing that is free for non-profit use. It helps alleviate these issues 
by (1) allowing users to directly access and process high-resolution data stored in a 
multi-petabyte catalog in the cloud, (2) enabling scientists to run remote sensing operations on 
large geospatial datasets quickly via a high-performance network of Google’s supercomputers, 
(3) facilitating automation of calculations that can be reused in various contexts, and (4) giving 
researchers access to near-current satellite imagery, thus setting us up to monitor habitat 
changes routinely over time.  
 
We recommend transitioning to using GEE for obtaining and processing remote-sensing data to 
leverage and build on our current work. This would allow us to quickly access recent satellite 
imagery and derive habitat indices that reflect more current conditions of the landscape, and 
thus would allow for rapid updating of models to monitor habitat over time. It would also allow us 
to explore processing imagery at a finer spatial resolution (10m rather than 20m), potentially 
revealing patterns in vegetation and soil relevant to SKR not available via other means. 
 
Although the transition would involve up-front programming and testing costs, once remote 
sensing workflows are optimized on GEE, they could be applied to numerous other species or 
habitat issues of conservation concern, especially those sensitive to more nuanced habitat 
qualities than available via traditional techniques.  

Subregional Models 
Although the range-wide models presented here performed well at depicting SKR habitat 
values, there appear to be some strong subregional differences in how environmental variables 
influence SKR across the region--for example from coastal to inland climates. Also, some 
variables, such as light pollution and roads may vary in how they affect SKR habitat quality in 
different regions.We recommend developing subregional models based on ecological 
subsections to provide an ecologically sound basis for subdividing the range and accounting for 
this variability to provide more accurate mapping of habitat value.  
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Connectivity and Population Modeling with Genetic Inputs 
We recommend using a spatially explicit population model, such as HexSim (Schumaker and 
Brookes 2018), to investigate population dynamics of SKR across the species range. This would 
provide insights concerning minimal viable population sizes within isolated reserves and 
whether translocations amongst reserve areas would be a useful conservation tool. The degree 
to which SKR may be dispersing between reserve areas, or suitable habitat areas within 
reserves, is largely unknown, but recent population genetic results analyzed by D. Shier and 
others at CRI will greatly help in answering this question. Combining these genetic results with 
population modeling (i.e., incorporating dispersal frequencies and distances into models) and 
connectivity modeling (to investigate where management could improve genetic and 
demographic connectivity) would be a powerful means for informing strategies for sustaining 
and increasing SKR population and metapopulation viability.  This seems critical to refining 
conservation and recovery plans for the species. 

Adaptive Management and Monitoring System 
Refined habitat maps that can be readily updated (e.g., utilizing GEE’s capabilities and satellite 
imagery) seem the ideal foundation for an adaptive management and monitoring system.  This 
would allow reserve managers to track habitat changes over time both within and among habitat 
areas, correlate them with field measures of habitat and population status, and prioritize 
management actions. Ideally, the system could be packaged into a user-friendly, perhaps 
online, decision-support platform that reserve managers could readily use to test results of their 
actions and inform future actions. 

Other Species 
The capabilities of a GEE-based modeling platform taking advantage of multispectral satellite 
imagery and other geospatial data sources have obvious potential benefits not just for SKR but 
for a large suite of species of interest. For example, many rare plant and animal species 
respond to more fine-grained and nuanced habitat features than available by traditional 
methods, and the benefits of near real-time updating of habitat conditions for monitoring are 
tremendous. We believe that transitioning to a GEE-based habitat modeling system could 
greatly reduce monitoring costs for a wide array of species, while also increasing the accuracy 
and utility of habitat maps for them. An up-front investment in developing such a system would 
seem very justified given the long-term savings. 
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