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Introduction

Habitat connectivity is a cornerstone of conservation, as its key goal is to connect an
increasingly fragmented landscape, allowing for gene flow between wildlife meta-populations
(Taylor et al. 1993; Beier & Noss 1998). A well connected landscape is also critical for the
viability of many species in the face of climate change, as it allows for movement necessary to
track suitable climate (Beier et al. 2008; Keeley et al. 2018).

This is an “action research” project that makes scientific products necessary for conservation
decision-making, while also applying additional methods to explore scientific frontiers. It is
anticipated that the applied work will help the most locally, and the exploration of novel methods
will help more with the global biodiversity challenge.

The applied conservation science assignment was to prioritize and map areas important for
wildlife habitat connectivity within several regions in California: the Modoc Plateau, the
Sacramento Valley, and the West Mojave Desert (Figure 1). These regions are important for
alternative energy expansion in order to meet California’s ambitious plans to reduce greenhouse
gas emissions by 2030. Identifying critical pathways for wildlife movement in these regions
would help the state avoid or minimize impacts in these areas. In general, there are two ways to
conserve connectivity in a region — (1) conserve more habitats in key areas that facilitate
movement and (2) mitigate landscape features that impede movement, such as roads, railroads,
and urban development (Ament et al. 2014). Our connectivity analysis results were used in
combination with other conservation factors to answer these questions: what areas should be
conserved or avoided? What areas may need mitigation for any kind of development?

In the past decade, connectivity modeling techniques have blossomed (i.e. the table of eight
tools in Ament et al. 2014) with resistance-surface based modeling being the most commonly
used (Wade et al. 2015). In this modeling (e.g. Circuitscape, Linkage Mapper, UNICOR, etc.),
each cell of a raster is assigned an estimated “resistance to movement” across the cell by a
species, and then swaths of land with low resistance to movement can be identified, and
delineated as linkages. This modeling often uses core areas of quality habitat that are
connected by the linkages.

This resistance-surface based modeling traditionally used the focal species approach, which
includes the habitat preferences of a particular species in defining the resistance surface. This
helps ensure that the mapped cores and linkages would conserve this species in addition to
other biodiversity (Wade et al. 2015). The modeling can also be applied using the general
“naturalness” of the physical environment (structural connectivity approach). This structural
connectivity of a landscape ignores the preferences of specific organisms to specific habitat
types and other ecological factors. It only considers resistance to movement of animals in
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general, by mapping resistance of man-made structures, aquatic features, etc. (Kadoya 2009).
This is also known as naturalness-based connectivity (Krosby et al. 2015).
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Figure 1: The three Study Regions. (Most maps in this reports are “screen grabs” from databasin.org,
and are hotlinked to their online, interactive map.)

An emerging practice is to consider and combine both approaches (focal species and structural)
when mapping connectivity (Washington Wildlife Habitat Connectivity Working Group 2012;
Krosby et al. 2015). They can be thought of as the coarse filter and fine filter approach to
connectivity that work best in conjunction, much like habitat representation and single species
conservation are thought of as complementary approaches to making sure nature as a whole
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gets represented in reserves, but also that important species do not “fall through the cracks”
(Noss & Cooperrider 1994).

When combining multiple model outputs, the envelopes (geographic extent) of the linkages are
often overlaid (Penrod et al. 2013; e.g. Krosby et al. 2015). In other words, if one species of
eight has a linkage in an area, and the other seven use an alternate linkage, both linkages are
mapped with no indication or relative priority. This tends to result in much (e.g. more than half)
of the region being identified as a core or linkage conservation priority, especially as more
species are considered. Practitioners and funders have indicated that this becomes of limited
value in trying to prioritize where to allocate scarce resources.

In doing this action research, we explored three questions:
e How can we assist prioritization efforts by improving the way that connectivity models
map conservation priority both within and among the linkages on the landscape?
e How can climate change considerations be better incorporated into habitat connectivity
modeling and prioritization?
e How can the priority area maps for many focal species, and several structural
(naturalness-based) connectivity analyses, be combined into a single map?

To explore the prioritization and climate questions, we used three tools within the Linkage
Mapper software package and combined their outputs. The three tools are as follows:

e Linkage Pathways Tool (originally called Linkage Mapper) which maps the linkages
and quantifies the value of each path within a linkage (McRae & Kavanagh 2011). This
results in “least cost corridors”, the same overall product as the California Essential
Habitat Connectivity Project (Spencer et al. 2010).

e Pinchpoint Mapper, which uses circuit theory (Circuitscape) to help quantify the
conservation priority of portions of a linkage that are dangerously narrow (McRae 2012).

e The Linkage Priority Tool quantifies which linkages and core areas are most valuable
(Gallo & Greene 2018). Core area priority value is a function of shape, mean resistance
value, size, climate refugia, and expert opinion values, if available. Linkage Priority value
is a function of the priority value of the cores being connected, and of the characteristics
of each linkage, such as permeability (i.e., the mean resistance values along the least
cost path), the length, the centrality, and expert opinion if available (Figure 2).
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Figure 2: Conceptual diagram of the Linkage Priority Tool. Optional climate wise features have

a dashed line.

Version 1.x of this software has been extensively used and field tested in connectivity analysis
and mapping in the state of Washington (see various connectivity products generated to guide
conservation planning at https://waconnected.org/) and elsewhere (e.g. Jones 2015). We added
the Linkage Priority Tool to Linkage Mapper Version 2.0.

We provide outputs of these tools as stand-alone products as well as in their combination. By
combining them, we are combining priorities at three scales: linkages at the scale of a
landscape, pathways at the scale of a linkage, and pinchpoints at the most local scale. These
tools, and others, are summarized on the Linkage Mapper Tools webpage.

There are many climate considerations that can be incorporated in connectivity modeling and
mapping (Keeley et al. 2018). We incorporate two of these in our climate-wise modeling
approach, both of which are included systematically in the Linkage Priority Tool of Linkage
Mapper v2.0. First, we give higher value to pathways that facilitate climate-induced range shifts
in species’ habitats. Suitable climate for a species (i.e. the climate envelope) will shift, often
towards higher latitude and elevation. In order for species to achieve the necessary range shift
in response, there needs to be suitable habitat connectivity to allow the species to move. This is
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often termed range shift connectivity or climate gradient connectivity (Keeley et al. 2018).
Secondly, we prioritize core areas and linkages that include climate refugia and microrefugia by
giving them a higher value in the modelling process (Hamann et al. 2015; Keeley et al. 2018).

We explored two different approaches for synthesising the results of several focal species and
structural connectivity analyses. In the Mojave, the portions of linkages identified as important to
the focal species were added to the structural connectivity results if they were not already there.
In the Sacramento Valley, the structural connectivity results and focal species results were
combined in a weighted sum, and only the medium and higher valued results were mapped.

We provide here the methods of the three studies, followed by their results (with hyperlinks to
the online maps), and then a brief conclusion. There is a short glossary of key terms and
synonyms, followed by the references, and appendices of additional details.

Methods

Summary

We performed a structural connectivity analysis for the Modoc Plateau that included the
aforementioned climate-wise considerations. We also repeated this approach for the West
Mojave, but with some additions: we modeled structural connectivity making assumptions on
movement behaviour relevant to small species or large species, and also modeled connectivity
for two focal species (Mojave ground squirrel and desert tortoise). We combined these using the
open source logic modeling framework called environmental evaluation modeling system
(EEMS) (Sheehan & Gough 2016) which now integrates with Data Basin and an online viewer
eemsonline.org. This resulted in a single map of connectivity conservation priorities, and also
the ability view the intermediate products in an online graphical user interface. In the
Sacramento Valley, we used a similar approach, but with four different structural connectivity
considerations, and with four species (American badger, mule deer, bobcat, and tule elk). We
combined these with a weighted sum, and removed the lowest valued results. In this report, we
provide the most detail in the methods and results for the Modoc, then focus on the methods
and results of the other two regions that are different. All three sections have appendices with
additional detail.
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Modoc Plateau Methods

Summary

We modeled structural connectivity at 270 m resolution. We combined linkage pathways (i.e.
least cost corridors with varying widths) with pinchpoints and linkage priority considerations. We
then combined linkages with core areas (using relative core area value) to yield a single
“Connected Conservation Value” map layer. Regarding climate considerations, we gave higher
priority to linkages that connected a large climate gradient to allow for range shift, and for
linkages that connected cores that had high scores for climate refugia.

Resistance Surface and Core Areas

We first created a 270 m resolution “High Contrast Landscape Intactness” surface by combining
18 data layers in an EEMS logic model (Conservation Biology Institute 2018 and Appendix A).
We then inverted it and combined it with a map of human modification that was lower contrast in
values with more smoothing, (Conservation Science Partners 2016), an initial map of structural
resistance. But initial Linkage Mapper runs of the connectivity model based on this initial surface
yielded linkages passing through lakes and rivers. Water barriers were not getting high enough
resistance values, so we burned in higher values for these features to create an “Enhanced
Resistance Surface”. Thus, our landscape resistance surface is representative of winter
conditions, when water bodies are full. Furthermore, contextual conditions of roads (such as
road density or distance from urbanization) were causing Linkage Mapper to erroneously infer
road crossings or underpasses where they do not exist on the landscape. To address this, we
burned in constant values to roaded reporting units of the Enhanced Resistance Surface.
Hence, all road cells of the same class have the same minimum value, and the resistance
values near roaded reporting units reflect contextual values, such as road density. The detailed
methods and diagrams are covered in Appendix A.

Core areas were created from a statewide layer which provides an estimate of terrestrial
landscape intactness, (i.e. condition), based on the extent to which human impacts such as
agriculture, urban development, natural resource extraction, and invasive species have
disrupted the landscape across the State of California (Degagne et al. 2016). Terrestrial
intactness values are high in areas where these impacts are low. It be found here: Landscape
Intactness (1 km), California. Landscape intactness values classed as “Very High” (greater than
0.75 on the scale ranging from -1 to 1) were selected, then areas less than 10 sq km were
dropped leaving us with the cores dataset.

Climate Inputs

For climate signature, we needed a single layer that incorporated both the temperature and
precipitation aspects of climate. We used climatic water deficit (CWD), which is Potential
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Evapotranspiration minus Actual Evapotranspiration. Evapotranspiration is a function of
temperature, precipitation, and land cover. The potential evapotranspiration is how much water
would have been transpired by plants at a location if there was an unlimited amount of water.
Hence, hot and dry areas will have a high CWD. For the current climate signature on the
landscape, we used the 1981-2010 average CWD, and for the future climate signature, we used
the 2070-2099 modeled CWD which is the average derived from seven global climate models
(Flint et al. 2013).

For climate refugia, we first created the evenly weighted sum between topographic
heterogeneity and climate stability (between the present climate and the climate of 2046-2075).
(We used the shorter timeframe to measure stability, for increased certainty, and the longer
timeframe for signature, for increased variance.) We then calculated the mean value of this
climate refugia layer for each core area, to get the climate refugia value of each core area,
assuming that a species that exists in an area of high topographic heterogeneity has less
distance to travel to find suitable micro-climate refuge than a species that exists in a
homogenous landscape.

Connectivity Analyses and Synthesis

We implemented the Linkage Pathways, Pinchpoint Mapper, Centrality Mapper, and Linkage
Priority Tools. The final parameter values for the models and input data layers (Appendix D)
were based on the West Mojave parameter values, which were determined using an iterative
expert opinion and stakeholder feedback approach (see West Mojave Methods Chapter).

We then synthesized the outputs to make the Connectivity Conservation Priority layer. We
started the synthesis with the standard conventions of weighted linear combination (Malczewski
1999; Malczewski & Rinner 2015). Before combining, each layer was linearly normalized such
that the highest value of the layer was a 1 and the lowest was a 0 (i.e. score range
normalization). An overview of this synthesis is provided in Figure 3.
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Figure 3: Connectivity Conservation Priority of a Single Run. Weights for Modoc were as follows
(Sum #: Weight 1, Weight 2): (1: 0.5, 0.5) (2: 0.75, 0.25) (3: 0.5, 0.5) (4: 0.67, 0.33). The
Relative Core Area value ranged from 0.6 for the lowest value core to 1 for the highest value
core.

The Pinchpoint Mapper synthesis was an evenly weighted sum of the linearly normalized
pinchpoint mapper output of adjacent pairs (highlighting the few highly important pinchpoints on
the landscape) and the rank normalized pinchpoint mapper output of adjacent pairs (highlighting
the relative importance of the pinchpoints within each linkage). Linear normalizations are the
most simple, but the drawback is that their histogram distributions can be skewed, returning
non-intuitive results when combining with other skewed layers. Linkage Priority was given a
higher weight than Linkage Pathways (0.75 vs. 0.25) to increase discrimination. Weighted sum
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#4 was not even because it was felt that pinchpoint mapper was approximately 5, if not less, of
the influence when it comes to connectivity conservation priority, not Y.

At the top level of synthesis, the core areas were combined with the linkages (with the maximum
value of the two layers for each cell) to make a single layer. This allows the “Connectivity
Conservation Priority layer” to be used in combination with other conservation assessment
layers, such as rare species hotspots, etc. Core areas were not all assigned the same value.
Rather, the relative core area values (ranging from 0-1) from the Linkage Priority Tool were
used. Since even the worst core are on a landscape has high relative conservation value, the
range of values for the core areas should be transformed before being combined with the
linkages. We examined three ranges for the lowest valued cores to the highest (0.6-0.8, 0.6-1.0,
and 0.8-1.0) and found the 0.6 to 1.0 range to be the best complement to the linkages layer for
this particular regional context.

West Mojave Methods

Summary

The West Mojave methods were similar to those used for the Modoc Plateau but with additional
“structural connectivity typologies” based on different modeling assumptions as well as two focal
species analyses (Mojave ground squirrel and desert tortoise). We considered both climate-wise
timeframes and more immediate timeframes. We implemented an approach for combining all six
products into one usable map layer. The methods that are different than the Modoc Plateau or
provided here.

Participatory Process

For all of the below steps, the CBI science team performed initial modeling and scoping, then
presented these to an Environmental NGOs Science Advisory Team for feedback and revision.
Model parameterization was based on knowledge and data of the well studied species of the
area, aerial imagery, and feedback from stakeholders and expert advisors. In some cases there
were many more than one iteration of refinements.

Connectivity Analyses and Synthesis

Rather than using one structural connectivity analysis, we used four “structural connectivity
typologies” and combined the products. Such a typology is an explicit definition of the spatial
and temporal factors targeted when choosing the methods and setting the parameter values of
a structural connectivity model. For example, the three common time frames considered in
different connectivity modeling analyses are short term (e.g. connectivity for seasonal migration
of an individual), medium term (e.g. intergenerational dispersal), and long term (e.g. species
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range shift to account for climate change)(Keeley et al. 2018). Choosing methods and
parameters to model for the medium term is a different typology than modeling for the long term.
The same holds true for parameterizing a structural connectivity analysis to mimic how a small,
slow moving species moves through the landscape versus doing so for a large, fast moving
species. We modeled four typologies: 1) representing a small, slow moving species for the
medium term or 2) long term, and 3) representing a large, fast moving species for the medium
term or 4) long term (see Appendix D for parameter details and Appendix B for some more
discussion on the concept).

To do this, we made resistance surfaces for the small species typologies, in a manner similar to
that of the Modoc, except they did not include the Human Modification layer (Appendix D). For
the larger species typologies, we used the Human Modification surface (Conservation Science
Partners 2016), and augmented it with additional data not represented in the original layer
(Appendix D). For the two long term typologies, we also modified the resistance surfaces to
have lower resistance in areas that provided climate refugia (Appendix D). Core areas were
derived based on selecting contiguous areas of low resistance (Appendix D).

We used the fuzzy logic model EEMS (Sheehan & Gough 2016) to combine the various outputs
of each typology (Figure 4). The Least Cost Corridor and Linkage Priority outputs were
combined using an evenly weighted average to create relative Linkage Value. Linkage Value
was then combined with the Pinchpoint output also using an equal weighting. This process
resulted in higher relative value to pinchpoints and less to linkage priorities compared to the
Modoc. The same process and weights were used for the other three typologies.
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Figure 4. An alternate approach for combining the linkage mapper products for one structural
connectivity typology.

Then the Stakeholder Scientist Advisory Committee requested that the number of different
outputs be reduced to allow them to understand the process quickly and easily, since this was
just one part of a larger Conservation Values model. Therefore we altered our approach
reducing our outputs from four to two by combining our typologies. We made one for small
species and one for large species, each incorporating both “medium-term connectivity” (i.e.
dispersal, or demographic) and “long term connectivity” (i.e. climate-wise connectivity). Medium
and long term results were integrated by limiting the long term connectivity results to within the
spatial envelope (i.e. mapped linkage locations) of the medium term runs. Hence, this shows
the locations of the linkages based on more immediate considerations, but maps the relative
priority of cells within and among those linkages with climate change considered. In theory,
there was the risk that the locations of the climate-wise linkages would not overlap fully with
those of the demographic linkages, but in practice that drawback was minor. (see Appendix B
for maps and links to online interactive maps).

We also modeled connectivity for two focal species, the Mojave ground squirrel and desert
tortoise. These species were chosen by the Advisors because of their data richness and
ecological importance.The resistance surfaces were based on combining the small species
structural connectivity resistance surfaces with the species distribution models of each species.
For Mojave ground squirrel, the core areas were defined based on high densities of
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observations, buffered by 100,000 cost-distance meters from the small species structural
connectivity resistance surface. For desert tortoise, a higher number of observations existed so
we relied on them exclusively to define core areas and destination areas, and combining them
into one single core areas file. See Appendix B for the detailed methods for building the
resistance surfaces, and core areas for each species. In addition to the demographic (medium
term) runs, Climate-wise models were run for the Tortoise and Mojave Ground Squirrel. The
differences with the Demographic runs were minor and the amount of material being provided to
the stakeholders at this point of the process was becoming overwhelming. Hence, these were
not incorporated into the synthesis. But they are important stand alone products, and are
mapped and linked from Appendix B.

The two structural connectivity outputs were combined in an evenly weighted union (i.e.
average) (Figure 5), giving areas important for both small and large species typologies extra
high conservation priority.

Structural
Connectivity
Union
“Small Species” “Large Species”
Structural Connectivity Structural
Map Connectivity Map

Figure 5: Synthesis of Structural Connectivity Layers

We then combined structural and focal species analyses by adding in to the above product the
connectivity areas that were important for the focal species (Mojave ground squirrel and desert
tortoise) but omitted in the structural connectivity (SC) analysis.

To do this, we used the medium-term (i.e. demographic dispersal runs) of each focal species.
For each, we linearly rescaled the focal species output range to match SC (-1 to 0.857), and
then subtracted SC from the focal species connectivity layer. We then only considered the
positive values (where SC underestimates focal species connectivity), and rescaled these
linearly to range from -1 to 1, where a value of 1 indicates severe underestimation. We then
added the difference maps for Mojave Ground Squirrel and Desert Tortoise to get a combined
difference map, identifying the portion of the landscape with the most severe underestimate of
connectivity needs. This process yielded a small percentage cells on the landscape that were
small, isolated fragments which we manually removed. We then normalized this layer to range
from -1 to 0.857 (like the SC), called the Normalized Significant Connectivity Areas layer, and
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combined it with SC using an “Or” operator (Max). The final output, High Structural Connectivity,
identifies areas important to both focal species and structural connectivity (Figure 9).

High Key:
Structural
Connectivity
Top Level
or Connectivity

Intermediate

Normalized
Significant Structural
Connectivity Connectivity # = Convert to Fuzzy (Normalize)
Areas
l. Union
I
Significant Small Species Large Species
Connectivity Connectivity Connectivity
Areas Value Value

Figure 6: Synthesis of Structural Connectivity and Focal Species

Sacramento Valley Methods

Summary

The Sacramento Valley methods were similar to those used for the Mojave but with different
“structural connectivity typologies”, with four focal species instead of two, and with an alternate
approach for combining all products into one single usable map layer.

Connectivity Analysis and Synthesis

We modeled habitat connectivity priorities for the Sacramento Valley by delineating population
nodes (i.e. cores) for four focal species (mule deer, bobcat, American badger, and tule elk) and
the linkages between them and evaluated their relative prioritization. These species were
selected based on data availability, and for representing a variety of habitats. Again, the
resistance surfaces were created by combining habitat suitability models specific to the species,
but lacking in resistance factors such as roads, with structural resistance layers. The core areas
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were defines as contiguous areas of low resistance over a certain size threshold. The methods
for the resistance surfaces and core areas are described in Appendix C.

We modeled structural connectivity under two assumptions regarding canopy cover: that tree
canopy is highly important for animal movement in this largely agricultural valley and that all
natural habitats are equally important. We also used two assumptions about node size: that
nodes as small as 1 km? are important and that nodes must be a minimum of 8 km?. Hence, we
modeled four structural connectivity typologies representing species that are (1) small and have
an affinity for canopy cover, (2) small and no affinity, (3) large and an affinity, and (4) large and
no affinity. The resistance surfaces were derived similar to the Modoc methods, except with an
underpass correction layer as well (bridges over water, indicating areas were animals can pass
under roads), and canopy considerations burned into those two typologies (Appendix C). We
ran all four of these products for current connectivity, and also for climate wise connectivity. The
parameter values for the connectivity models are in Appendix D.

The methods for combining all the outputs from Linkage Mapper Toolbox for a single run were
the same as for the Modoc (Figure 3), with slightly different weights. In the Sacramento Valley,
we assigned equal weights of 0.5 to Linkage Priority and Linkage Pathways outputs while
Relative Core Area value ranged from 0.6 to 0.8 for the highest value core. However, we
recommend weighting Linkage Priority outputs higher as we did for the Modoc to better capture
their importance.

While all sixteen results can each stand on their own, stakeholders also wanted us to try
providing a single synthesis map. We first combined all sixteen outputs to create one integrated
connectivity priorities layer using evenly weighted sums. But expert feedback was that we
needed to simplify, and that in this region the long term view was imperative, so we instead only
mapped and synthesized the eight climate-wise runs (Figure 7).
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Figure 7 The approach used to combine the eight different connectivity analyses.

Results

All results are provided from one central location, a Mapping Gallery in Basin Gallery.

Modoc Plateau Results

The input layers, as well as all the primary output layers diagrammed in Figure 3 are displayed
by clicking them in the Layers Tab of the online interactive map on Data Basin. A few of them
are provided here. The Linkage Pathways layer (i.e. Least Cost Corridors) is the traditional
connectivity output (Figure 9). The Pinchpoints layer (using Circuit Theory) was normalized
linearly to range from 0-1 and highlights the pinchpoints relative to the whole region (Figure 10),
and if rank normalized, gives more emphasis to all pinchpoints (Figure 11). The relative Linkage
Priority layer is the spatial representation of the table that gives a specific numerical value to
every linkage (Figure 8). These are all combined in the Connectivity Value without Cores
output, which can be overlaid by the core areas,mapped in black, to get a slightly more
traditional looking map (Figure 13). The Relative Core Area Value (Figure 14) is one of the
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intermediate products in determining linkage priority, but is also normalized to range from 0.6 to
1.0 and combined with the above in the final synthesis to map the estimated Connectivity
Conservation Priority layer of the entire landscape (Figure 15).
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Figure 9 Core areas (in black) with Linkage Pathways layer (i.e. Least Cost Corridors) in which
yellow is the best path (least cost).
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West Mojave Results

The same set of intermediate products created for the Modoc Plateau were created for the West
mojave for each focal species and each structural connectivity typology. The top-level focal
species connectivity results are here (Figure 16 and Figure 17), as is the full synthesis map that
combined the focal species and structural connectivity typologies (Figure 18). The inputs,
intermediate outputs, and top-level outputs can be explored via two different graphical user
interfaces (GUI). The first is with EEMS Explorer, by opening the Final Map and clicking on the
logic model icon (Figure 19) and then clicking on the High Structural Connectivity Box in the
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EEMS Explorer interface that pops up (Figure 20). From there, the user can click on input data
layers, or click on a cell and see the values of all input and output layers.

The second GUI is within eemsonline.org, a separate web application, by navigating or
hyperlinking to the West Mojave Least Conflict Model. Final. then clicking on the High Structural
Connectivity box and underlying boxes (Figure 21). Pressing the gear icon allows the user to
change the weights and operators, rerun the model, compare results, and send the link to the
new model to collaborators.
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Sacramento Valley Results

The eight connectivity model results, depicted individually in Appendix C, are all accessible via
the interactive online map in Data Basin. An example of one of them, American Badger, is
shown here (Figure 22).
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Figure 22: Badger Connectivity showing relative core area value, and relative connectivity value
of a cell based on linkage pathways, pinchpoints, and linkage priorities that consider
climate-wise and other ecological factors.
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The synthesis of all eight of these results in one output (i.e. the top box of Figure 7) is provided
here (Figure 23).
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Gallo et al. 2019: Climate-wise and Multiscale Habitat Connectivity for CA. Conservation Biology Institute Page 32



In response to expert feedback suggesting our outputs mapped too much of the region with
connectivity value, we implemented an automated approach to refine the area mapped as high
connectivity conservation priority. We first selected all areas mapped as a value of 0.25 or
greater (based on focal species observation points) and then rescaled the result linearly to

range from 0-1 (Figure 24).
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Users can explore final, input, and intermediate layers from the above Figures at the following
hotlink, Map: Synthesis of the Sacramento Valley Connectivity Results.

Conclusion

We met the applied science needs of this action research project as well as explored scientific
frontiers. We met the applied science needs by mapping the core areas and linkage pathways
(least cost corridors) for structural connectivity in three landscapes and for focal species in two
of those three landscapes. These two products (cores and linkages) are map layers that are a
part of every combination map online, and can be turned on by the end user.

We explored scientific frontiers in a variety of ways. We developed and implemented a new
systematic approach towards climate-wise connectivity by both giving linkages higher priority if
they connected core areas that had more climate refugia, and also if they span a large climate
gradient from core to core, allowing for species range shifts. We also implemented new
approaches to synthesizing varied aspects of connectivity and connectivity products into single
maps and demonstrated their successful application in three regions of California.

Future analyses could be improved in a few ways. First, we recommend improving upon the
final clipped synthesis map of the Sacramento case. Most of the small and isolated fragments of
low connectivity value that remain after the clip appear to be are artifacts of the geoprocessing.
They should be examined to determine if they are unlikely to contribute meaningfully to overall
connectivity value, as expected. If so, how should they be systematically identified and
removed. This could be done via a script that identifies and removes such artifacts, or by using
a smoothing algorithm that uses the maximum value in a neighborhood (e.g. Liu et al. 2018)

Second, we recommend testing the use of eemsonline to facilitate the iterative process of
evaluating various logic models, operators, and weights for building resistance surfaces,
synthesizing products, and/or integrating outputs. This tool allows for easy interactive data
exploration by science advisors where they can try different parameter values and compare,
contrast, and share results. We demonstrate this approach for the Modoc resistance surface
here, and for the synthesis of pinchpoint mapper, linkage pathways, and linkage priority here
(without the cores mapped). Third, it would be good to give the user additional options for
normalizing the linkage priority components, such as relative permeability, before they are
combined.

Further, we have compiled a list of additional data, objectives and methods that would improve

any future connectivity analyses in these three regions (available upon request). This includes
using existing protected areas to help define the core areas, incorporating protected area status
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into “Other Core Area Values” of the Linkage Priority Tool, or “burning in” protected areas into
the resistance surface as lower resistance than otherwise modeled (to help route planned
corridors through existing protected areas).

Glossary

Here we briefly define some important terms used in this study, as well as key synonyms. If the
term you are looking for is not here, please email it to the lead author for a definition that will be
added to a future report for this region or elsewhere.

climate-wise connectivity: connectivity that specifically facilitates animal and plant movement
in response to climate change (Keeley et al. 2018). (Syn. Long-term Connectivity, Climate Lens,
Climate-smart Connectivity)

connectivity: “the degree to which the landscape facilitates or impedes movement” (Taylor et
al. 1993) and, because of the widespread conversion and fragmentation of natural habitats by
human activity, it has become an essential component of many successful conservation plans.

connectivity conservation priority: a value that is assigned to every cell on the landscape that
estimates how important the conservation of that cell is to landscape connectivity, which is
based on conservation of core areas connected with suitable habitat for movement of
biodiversity.

core areas: significant habitat areas for the persistence of meta-populations of a species, or for
multiple species. Also termed “Nodes” in some instances when they are mapped based on
structural characteristics and not with any particular species in mind. (Syn: Landscape Blocks,
Nodes)

corridors: swaths of the landscape that connect two or more significant (or core) habitat areas.
Corridors can be designed to facilitate the movement of selected wildlife species (wildlife
corridors) or they can be more general to accommodate plants and/or ecological processes
(linkages). In this study, linkages and corridors were treated as synonyms several times.

demographic connectivity: connectivity designed to maintain meta-populations of species in

the medium-term, such as facilitating the movement of adolescent males from one core area to
another. See focal species in the introduction. (Syn: Medium-term Connectivity)
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focal species: the more commonly used term for surrogate species. See definition for
surrogate species.

long-term connectivity: see “climate-wise connectivity.”
nodes: see “core areas’.

North Sacramento Valley: This is the term that some stakeholders used for the entire
Sacramento Valley (i.e. the northern half of California’s great Central Valley). So, for the data
layers, and any such mentions in this report, they are synonymous terms.

permeability: the degree to which a place is conducive to wildlife movement. The place can be
a single pixel (cell) on the landscape, a linkage, or the landscape itself compared to other
landscapes. The inverse of the resistance surface is often termed a permeability surface.

structural connectivity: the connectivity of a landscape based on lack of man-made structures,
this ignores the behavioral response of organisms to habitat types and other ecological factors
(Kadoya 2009).

species connectivity: also referred to as functional connectivity in the literature, describes the
degree to which landscapes actually facilitate or impede the movement of specific organisms
and processes (Wade et al. 2015).

surrogate species: are subsets of species which are “representative” of multiple species or
aspects of the environment. These include umbrella, keystone, indicator, and flagship species.
(Caro & O’'Doherty 1999).
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Appendix A: Modoc Plateau Resistance Surface Details

Methods

Overview of Methods

The Modoc study area’s enhanced resistance surface provides an estimate of general
landscape resistance to animal movement (scaled from 10 to 800), with road and water barriers
burned in for optimal performance in Linkage Mapper connectivity analysis. The Modoc Plateau
study area is shown in Figure 1, and stops at the Oregon and Nevada borders due to data
constraints; (some thematic input layers were only available for California). The final landscape
resistance product, used to guide Linkage Mapper’s connectivity algorithms in generating least
cost corridor, pinch-point, and prioritized linkage results, was created using ESRI's ArcGIS
ModelBuilder and the Conservation Biology Institute’s EEMS (Environmental Evaluation
Modeling System) fuzzy logic modeling framework. This connectivity resistance surface (Fig. 2)
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is not species-specific. It's based on the condition of the landscape, (the extent and type of
alteration due to human activity), which impacts species’ movements across the landscape. This
is also known as a structural connectivity (Wade et al. 2015). It is an essential component of
connectivity (Beier et al. 2011), and especially useful when financial resources are scarce and
when large landscape structural patterns are adequate in addressing broad connectivity
questions. Overall, our final output characterizes barriers to animal movement and the
permeability of (ability for an animal to traverse) the landscape at 270 square meter resolution,
based on the level and type of human disturbance present.

Figure 1. Location of the Modoc Plateau study area within the state of California.

In short, our methods were to combine two different characterizations of landscape condition,
and add in expert-defined resistance for roads, and large water bodies. These additions allowed
the subsequent connectivity modeling algorithm to more consistently respond to movement
barriers.

The first characterization of landscape condition used in this analysis is termed “High Contrast
Landscape Intactness” (Conservation Biology Institute, 2017). We created this fine-scale
terrestrial intactness surface using EEMS logic modeling (details below). The second input
dataset, termed “Human Modification”, was created by Conservation Science Partners
(Conservation Science Partners, Inc. 2016; Theobald, 2013) and shows the degree of human
modification based on stressors defined by The Human Activities Framework (Salafsky et al.
2008; http://cmp-openstandards.org/using-os/tools/threats-taxonomy/). We normalized these
inputs to the same range and combined them to get an Average Landscape Resistance surface.
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We then augmented this with an expert-defined and consistent resistance for four road classes,
and large water bodies to yield the “Enhanced Resistance Surface” (Fig 2)..

(Details of these enhancements are summarized in Figure 7).

Landscape Resistance

Low

Figure 2. Enhanced Resistance Surface (version: MDC_TIRS_v6, H2b; ER v4 _H2b w_water),
in six classes from High (disturbed from urbanization, agriculture, or resource development in
red) to Low (relatively undisturbed in dark green) depicted within 270 m X 270 m reporting units.
Model inputs include: 1. High-contrast landscape intactness (Conservation Biology Institute,
2017), 2. Human modification, a smoother representation of the landscape (Conservation
Science Partners, 2016), and road and water features burned-in to improve performance in
Linkage Mapper.

Note, the CBI High-Contrast Resistance Surface model is on EEMS Online.

Detailed Methods
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High-Contrast Landscape Intactness (CBI, 2017): Background

Structural connectivity focuses on maintaining the connectivity of naturalness (i.e. intactness)
across the landscape. Intactness is characterized by a lack of human disturbance in an area
and considers an assemblage of spatially explicit indicators that define the condition of the
landscape. Landscape intactness is high in places where anthropogenic impacts such as urban
development and natural resource extraction are low. Different species may possess different
tolerances to these conditions, but natural assemblages of species and natural patterns and
processes are increasingly compromised as human influences intensify. Efforts to map and
quantify the intactness of the landscape can be used to model structural connectivity in two
ways: 1. By defining natural landscape blocks (i.e. cores) ; 2. By defining resistance to animal
movement, when inverted.

A wide range of techniques has been used to map anthropogenic impacts; these efforts have
introduced different names — human footprint, landscape integrity, landscape intactness,
naturalness — but they are all attempting to quantify essentially the same thing. Some of the
notable developments in the field are as follows, (with a focus on the western United States):

Early global attempts to map the human footprint were carried out by Bryant et al. (1997) and
Sanderson et al. (Sanderson et al. 2002) and then rescaled for ecoregional use by Woolmer et
al. (2008). In 2008, Leu et al. published the Human Footprint of the West, and in 2010 Spencer
et al. carried out the California Essential Habitat Connectivity Project. Building off the California
work, the Washington Wildlife Habitat Connectivity Working Group conducted statewide
landscape integrity modeling and connectivity mapping for Washington at increasingly fine
resolution (WHCHG 2010; WHCHG 2012). In 2013, Conservation Science Partners used the
human activities framework (Salafsky et al. 2008) to map human maodification in the western US
at 270 meter resolution (Conservation Science Partners, 2016); (this dataset is utilized in our
analysis). In 2015, The Nature Conservancy modeled terrestrial permeability for the Pacific
Northwest in their Conserving Nature’s Stage work (Buttrick et al. 2015).

For this project, we created our own high-contrast landscape intactness map for the Modoc
Plateau and combined it with Conservation Science Partners’s 2013 dataset to create a 270
meter resolution resistance surface to model species movement across the land.

High-Contrast Landscape Intactness (CBI, 2017): Logic Modeling

Landscape intactness values, (which were inverted to approximate landscape resistance), were
generated using ArcGIS Model Builder and logic models constructed within the EEMS
(Environmental Evaluation Modeling System) framework (executed within ArcGIS Model Builder
and custom Python Scripts). A logic model is a cognitive map (Jensen et al. 2009) that presents
various spatial data components and their logical relationships to evaluate a complex topic such
as landscape intactness (Fig. 3). EEMS is a tree-based, fuzzy logic modeling system developed
by the Conservation Biology Institute as an open source alternative to the EMDS (Ecosystem
Management Decision Support) software package (Sheehan and Gough 2016; Reynolds 1999,
Reynolds 2001). With the EEMS system, data from different sources and different numerical
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domains can be combined to answer complex questions, such as those concerning landscape
condition, conservation values, or vulnerability to climate change (Sheehan and Gough 2016).

Logic models are created from spatial data layers that are arranged in a hierarchical fashion to
answer a primary question that is located at the top of the diagram (Fig. 3). In this case, what is
the level of landscape intactness within each 270m X 270m reporting unit in the study area?
Data and analysis flows from the bottom up.

Unlike conventional GIS applications that use Boolean logic (1s and 0s) or scored input layers,
logic models rely on fuzzy logic. Simply put, fuzzy logic allows the user to assign shades of gray
to thoughts and ideas rather than being restricted to black (false) and white (true)
determinations. All data inputs (regardless of the type—ordinal, nominal, or continuous) are
assigned relative values between -1 (false) and +1 (true) up to six decimal places. There are
many advantages of this modeling approach: (1) it is highly interactive and flexible; (2) it is easy
to visualize thought processes; (3) the logic components are modular making it easy to include
or exclude pieces of the logic design; (4) the logic can be managed using a number of different
mechanisms; and (5) numerous, diverse topics can be included into a single integrated analysis.

As shown in Figure 3, raw spatial data source inputs are populated by one or more GIS data
layers and aggregated to reporting units (gray boxes). Moving up the diagram, these data are
arranged and analyzed to form intermediate map products (purple boxes), which are then
arranged and analyzed to generate the final results (pink, orange, green boxes). One way the
user controls the logic of the information is the arrangement of the various data inputs and
intermediate products—the higher up in the diagram, the greater the influence on the final
result.
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Using fuzzy logic as the core modeling principle, logic model performance is achieved in several
ways. For every spatial data input, the user determines how to assign the range of values along
a truth continuum. For example, when trying to determine and map the most suitable habitat
from the standpoint of road density for wildlife—the greater the road density, the greater is the
risk to wildlife through habitat degradation and direct mortality. In our example shown in Figure
4, road density ranges from 0 km/km? to 24.5 km/km?. To assign a fuzzy logic continuum for this
range of values, one could assign a -1 to the high value (this value is totally harmful for wildlife
or false) and a +1 to the lowest value (this value is totally beneficial for wildlife, or true, red line
in Figure 5). However, mountain lion research has shown that mountain lion populations have a
low probability of persistence in areas with road densities > 0.6 km/km? (Van Dyke et al. 1986).
So, a more meaningful alternative to set fuzzy thresholds for this parameter would be that a
road density of > 0.6 km/km? is totally false (-1) and 0 remains totally true (+1, green line in
Figure 4). Of course, not all wildlife species have the same sensitivity to roads, but this example
illustrates how the logic in the model can be altered for known thresholds.

-1
Truth continuum
based on known
ecological
thresholds
0
Truth continuum
based onfull
range of values
+1
0 24.6
Road Density

Figure 4. Diagram of two treatments of road density in fuzzy logic modeling illustrating
important model control options, one based on a full range of values (red line)
and the other based on a known threshold for road density (> 0.60 km/km? is
totally false [-1], green line).

Individual thresholds used for each component in the high-contrast landscape intactness logic
are provided in Table 1. (Note, some input components were created by summing several input

values together before applying fuzzy thresholds.) Since this intactness resistance surface was
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structural in nature and not species-specific, thresholds were set based on expert opinion and
iterative refinement of output patterns. As more literature becomes available on specific impacts
of anthropogenic alteration on animal movement, this information can be used to further refine
model thresholds.

Table 1. List of fuzzy logic data inputs for the high-contrast landscape intactness surface
(version: MDC_TIRS_v6, H2b; Enhanced Resistance v4_H2b_ w_water), showing data type, as
well as true and false modeling thresholds for each item at 270 m? resolution.

Input Data Type True Threshold False Threshold
Weighted Point Development
(Pollution, Energy, Mining, Comm) Count 0 8.5
(pts/km?)
Pct Urban Development Percent Cover 0 40

H o,
Dist. From > 25 % Urban Distance 0 1,000
Development

H 0,
Dist. From > 50 % Urban Distance 0 3,000
Development
Weighted Linear Features, Road .
Class Development (km/km?) DEEAY L 12
Dist. From Highways Distance 0 1,500
Dist. From Railways Distance 0 1,000
Dist. From Local Rds Distance 0 500
Dist. From Service Rds Distance 0 200
Dist. From 4WD & OHV Trails Distance 0 200
Pct Ag Land Percent Cover 0 100
Pct Timber Clearcuts Percent Cover 0 60

Spatial data are integrated using one of several logic ‘operators’. The operators used in this
analysis include: Weighted Sum, Weighted Average (or Fuzzy Union), Average Lowest (or
Selected Union), and Minimum (or Fuzzy And). The Sum operator simply combines similar data
into a single file before assigning fuzzy thresholds. Weighted Sum multiplies each input value by
the specified weight and then sums the resulting values. Weighted Average (or Fuzzy Union)
multiplies each input value by the specified weight, sums the resulting values, and then divides
by the sum of the weights. Weights are shown in Figure 3. Average Lowest 2 (or Selected
Union) finds the mean value of the lowest (Falsest) 2 inputs. Minimum (or Fuzzy And) causes
the lowest value to dominate in the resultant map between two or more inputs. Table 2
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describes the full range of logic operators available in the EEMS software package and the type
of data (fuzzy or raw) the operator expects as input. In executing the logic model for the
landscape, we processed the northern and southern halves of the landscape separately to
bypass computer processing limitations, and then stitched results together in post-processing.

Table 2. Logic operators available in the EEMS software package.

EEMS TOOL INPUT DESCRIPTION
DATA
AND Fuzzy Finds the AND value of the inputs (minimum value).
(previously OrNEG in EEMS version 1.0)
CONVERT TO Raw Converts a field's values into fuzzy values.
FUzzy
CONVERT TO Raw Converts a field's values into fuzzy values by using the user
FUZZY CATEGORY defined category values and matching fuzzy values.

Input values that are not in the user defined categories are
assigned the user-defined default fuzzy value.
DIFFERENCE Raw Computes the difference sum for each row of the inputs.

EEMS EMDS AND Fuzzy Fuzzy logic operator for EEMS (Environmental Evaluation
Modeling System). Finds the EMDS AND value of the inputs.
The formula is min + [(mean - min) * (min + 1) / 2]

MAX Raw Finds the maximum for each row of the input fields.

MEAN Raw Finds the mean for each row of the input fields.

MIN Raw Finds the minimum for each row of the input fields.

NOT Fuzzy Logical NOT for fuzzy modeling. Reverses the sign of values

of the input field.

OR Fuzzy Finds the truest value of the inputs (maximum value).

SELECTED UNION Fuzzy Finds the union value (mean) of the specified number of
TRUEest or FALSEest inputs.

SUM Raw Computes the sum of the inputs.

UNION Fuzzy Finds the union value of the inputs (mean value).

WEIGHTED EMDS Fuzzy Finds the weighted EMDS AND value of the inputs. The

AND formula is min + [(mean - min) * (min + 1) / 2] where the
mean is weighted.

WEIGHTED MEAN Raw Finds the weighted mean for each row of the input fields.

WEIGHTED SUM Raw Finds the weighted sum for each row of the input fields.

Multiplies each field by its weight before adding. Like a
weighted mean without the division.
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WEIGHTED UNION  Fuzzy Finds the weighted union (mean) for each row of the input
fields.

XOR Fuzzy Finds the fuzzy EXCLUSIVE OR value of the inputs by
comparing the two truest values. If both are fully true or fully
false, false is returned. Otherwise, applies the formula:
(truest value - second truest value) / (full true - full false)

All intermediate and final spatial layers in a logic model are rendered as fuzzy outputs, which
range from -1 (totally false) to +1 (totally true). However, for this project, the output of the
high-contrast landscape intactness EEMS model was inverted to become a resistance surface
and normalized to 10-800, to optimize performance in Linkage Mapper.

High-Contrast Landscape Intactness (CBI, 2017): Source Data

Data used as input to the high-contrast landscape intactness EEMS model were acquired from
multiple sources. Data were either downloaded directly from the source or acquired from partner
organizations. Table 4 lists all of the input data used in the analysis as well as data type and
originator. Creating the final enhanced resistance surface for input into Linkage Mapper required
the addition of one crucial dataset: Human modification in the western U.S. in 2011 at 270 m
resolution (v20160512). This dataset was produced under a contract between Center for
American Progress and Conservation Science Partners (CSP), Inc. It was generously made
available for use by CSP (Conservation Science Partners, Inc. 2016).

The input data used to create the high-contrast landscape intactness EEMS model range in
currency from 2011-2015; the majority of data portray the more recent condition of the
landscape.

When creating the high-contrast landscape intactness model, it was often necessary to compare
several datasets for a particular theme to determine those that were most appropriate for the
modeling effort. Consequently, many more datasets were pre-screened and evaluated than
were actually used in modeling. Several datasets were provided without metadata, or limited
amounts of metadata. In these cases, the data were either not used or efforts were made to
contact the data originators in order to obtain information about the data.

The high-contrast landscape intactness model integrates the following anthropogenic influences
on the landscape: agriculture development (from FRAP Vegetation and CDL Cropscape), urban
development (from LANDFIRE EVT and NLCD Impervious Surfaces), polluted areas (from EPA
Superfund and Brownfield sites), linear development (OHV routes from owlsheadgps, road
classes from TIGER, utility lines, railroads, and pipelines from various state and BLM sources),
timber harvest clearcuts, point development (communication towers from the FCC), energy and
mining development (from the state’s Office of Mine Reclamation mine dataset, state
geothermal wells, power plants, and state oil/gas wells). Overall, results are dependent on the
quality of available input data for a given area. Further refinements to the model include
stratifying road impacts by class, (i.e. different weighting for different types of roads), and taking
distance to urban development and linear features into account.

The resulting map of the high-contrast landscape intactness EEMS model (Fig. 3) is shown in
Figure 5.
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This model also can be explored via EEMS Online where the input, intermediate, and output
layers are accessible as online interactive maps showing the signature of human impact across
the landscape: http://eemsonline.org?model=4gkfUC0B4ytq3jg8fD6QJcSSdHXKASOA.

Table 4. Input data for the High-Contrast Landscape Intactness EEMS model.

Data -
Input Type Originator
USDA National Agricultural
Cropland Data Layer (CDL), Cropscape 2014 Raster Statistics Service
FRAP Vegetation (FVEG), 2015 Raster CAL FIRE
Impervious Surfaces, National Landcover Dataset .
(NLDC) 2011 Raster U.S. Geological Survey (USGS)
LANDFIRE Existing Vegetation Type (EVT) v1.3 Raster LANDFIRE
Forest Practice GIS Timber Harvest Plan Clearcuts, Polvaon California Department of Forestry
2000-2016 y9 and Fire Protection (CAL FIRE)
Off-Highway Vehicle (OHV) Routes, 2015 Line Owlshead GPS
2015 Tiger Roads’ Line U.S. Census Bureau TIGER
database
CA Electric Transmission Lines, 110-500 kV Line CEC, Scott Flint
CA Power Plants Point I, .E.nergy loanstel
Administration
California Rail Network Line CalTrans
CA Mine Sites Point CA Office of Mine Reclamation
California Natural Gas Pipelines Line CEC, Scott Flint
CA Department of Conservation,
California Qil and Gas Wells, 2016 Point Division of Qil, Gas and Geothermal
Resources
FCC Communication Towers Point Federal Communications

Commission, WFDSS
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CA Geothermal Resources Table (923 D010, (BT O O, CED el
Geothermal Resources
Environmental Protection Agency
EPA, Brownfield Sites Point (EPA),Facility Registry System
(FRS)
Environmental Protection Agency
EPA, Superfund Sites Point (EPA),Facility Registry System
(FRS)
National Hydrography Dataset Polygon USGS, High Res. National

Hydrography Dataset (NHD)

1. The TIGER roads dataset was created by merging multiple county level datasets.
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Landscape Intactness

Low

Figure 5. High-contrast landscape intactness, created by Conservation Biology Institute in 2017.
Darker areas are impacted by stressors such as urbanization, agriculture, energy production
and mining, transportation, and biological harvesting. Lighter areas are more intact, with less
human activity. Model resolution is 270 m.
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Human Modification (CSP, 2016): Methods

The following summary of the methods used to generate Conservation Science Partners’
smoother representation of human modification of the landscape is taken directly from the
data’s documentation (Conservation Science Partners, 2016):

“To map the degree of human modification, a list of stressors (or threats to natural lands) was
organized based on The Human Activities Framework (Salafsky et al. 2008;
http://cmp-openstandards.org/using-os/tools/threats-taxonomy/). At the top level, stressors are
organized into five Level | classes: residential and commercial development, agriculture, energy
production and mining, transportation and service corridors, and biological harvesting. These
are further broken into 1-3 specific activities, resulting in 11 Level Il classes. For each stressor,
specific datasets were used on which to calculate a specific indicator(s). In total, nearly
two-dozen datasets were used to depict 14 types of human activities. Each of these datasets
was based on readily available spatial data that represented multiple time periods.

For each indicator, two factors were calculated at a given location (cell): intensity and footprint.
Intensity () is the degree to which an activity at a location generally modifies terrestrial and
aquatic ecosystems, which is useful to differentiate effects of different types of land uses. For
example, using a patch of land as pasture is likely to have a lower overall effect on the physical
integrity of ecosystems than conversion to a parking lot. The second is the footprint (F), or the
areal extent of a given human activity. In practice, the footprint is measured as the proportion of
a raster cell (here 30 m) that is occupied by a given land use. Thus, the overall degree of human
modification (H) at a location is calculated as: H = | x F, where a value of 0.0 has no human
modification and a value of 1.0 has high modification. Estimates of | and F for each indicator
were made from two different sources: expert opinion or empirical datasets. For the
empirically-based stressors, | was estimated as a value from 0.0 to 1.0 based on the relative
amount of energy required to maintain a particular land use type, obtained from Brown and
Vivas (2005). Thus, H accounts for a gradient of impact of human activities, has a direct
physical interpretation, and the value remains a ratio data type so that differences within the
range are meaningful (i.e. a value of 0.8 is twice the effect of 0.4), unlike most index-based
approaches where values are converted to nominal or interval values. Note the H value was set
to No Data (i.e., masked out) for locations (30-m cells) that intersected lakes, reservoirs, or
rivers (represented by the USGS National Hydrography Dataset as waterbodies and river area
maps; http://nhd.usgs.gov/; accessed June 2015).

To combine stressors and map the cumulative human modification, a method was used that
minimizes bias associated with non-independence among several stressor/threats layers
(Theobald 2013), and that assumes the contribution of a given threat decreases as values from
other threats overlap. Locations with multiple threats will have a higher human modification
value than locations with just a single threat (assuming the same value), but the cumulative
human modification score converges to 1.0 as multiple human impact data layers are added.
Individual factors were combined across multiple data layers using an “increasive” function
(Theobald 2013), also referred to as a fuzzy sum (Bonham-Carter 1994).”

The results of Conservation Science Partners’ human modification analysis (described above) is
shown in Figure 6.
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Human Modification

High

/I Redding

Figure 6. Degree of human modification in 2011 (version: v20160512), based on stressors
(impacts to natural lands), created by Conservation Science Partners, Inc. 2016. Darker areas
are impacted by stressors residential and commercial development, agriculture, energy
production and mining, transportation and service corridors, and biological harvesting. Lighter
areas have less human activity. Model cell resolution is 270 m.
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Enhanced Connectivity Resistance Surface: Modeling Process

Creation of the final enhanced resistance surface can be summarized by five steps: 1.
Preprocess All Input Data, 2. Calculate Densities for High-Contrast Landscape Intactness
EEMS Modeling, 3. Execute EEMS Logic Modeling for High-Contrast Landscape Intactness, 4.
Create Average Landscape Resistance Surface, and 5. Generate Final Enhanced Landscape
Resistance Surface. These steps were carried out using a set of models developed in ArcGIS
Model Builder in conjunction with custom Python scripts. Table 5 provides an overview of the
functions that each model performed.

Table 5. Modeling steps used to create the enhanced resistance surface.

Model

Model
Diagram

Model Overview

Preprocess All Input
Data

Calculate Densities for
High-Contrast
Landscape Intactness

Execute EEMS Logic
Modeling for
High-Contrast
Landscape Intactness

Create Average
Landscape Resistance
Surface

Generate Final
Enhanced Landscape
Resistance Surface

ot gt gt o o

Clips all input data to the study area and projects all
input datasets to CA Teale-Albers NAD83; performs
preliminary aggregation of datasets.

Calculates a 270 m reporting unit density value for all
components of the high-contrast landscape
intactness model. Combines those density values
into separate fields in a single feature class. This
feature class is then used as input to the EEMS
model (step 3).

Applies fuzzy logic within the EEMS model
framework (Fig. 1-3). Calculates a landscape
intactness value for each 270 m x 270 m reporting
unit, based on input data, operators used, thresholds,
and weightings applied.

Combines the two landscape condition datasets [1.

High-contrast landscape intactness (CBI, 2017) and
2. Human modification (CSP, 2016)], after they are

normalized to a common scale (Fig. 1-4).

Burns in road and water features at constant values
to improve performance in Linkage Mapper
connectivity analysis (Fig. 1-4).
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Enhanced Resistance Surface: Results

The final enhanced resistance surface is based on the average of the two aforementioned
models of landscape condition: 1) Conservation Biology Institute's high-contrast landscape
intactness EEMS model (inverted to characterize resistance) (CBI,2017), which is suited to
animals with smaller home ranges, and Conservation Science Partner's human modification (D.
Theobald, 2016), which has a smoother surface.

The final result provides an estimate of general landscape resistance (scaled from 10 to 800),
with road and water barriers burned in at constant values for reporting units for optimal
performance in Linkage Mapper connectivity analysis. Overall, this output characterizes barriers
to animal movement and the condition of the landscape at 270 sq. meter resolution, based on
the level and type of human disturbance present. An overview diagram of the analysis is shown
in Figure 7 (next page).
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Appendix B: Additional Methods and Results for Mojave

Model Inputs
Typologies

In the main body we introduces the concept of structural connectivity typologies. Here is some
more discussion. Structural connectivity modeling is a quick way for modeling connectivity for a
large number of species on a landscape, rather than doing it for many focal species. The
parameters used in developing the input layers and in running the structural connectivity models
will affect what types of species benefit the most from the resulting outputs. For instance, small
species do not need large core areas (a parameter value), nor wide linkages (a parameter
value), while the inverse is true for large species. Further, the parameters used will affect the
relevant time frame of the outputs. The three common time frames considered are short term
(e.g. connectivity for seasonal migration of an individual), medium term (e.g. intergenerational
dispersal), and long term (e.g. species range shift to account for climate change)(Keeley et al.
2018). If we are most concerned about climate change and providing slow moving species with
linkages that allow them to shift their ranges from current to future climatic conditions, then we
will give higher priority to the linkages on the landscape that allow for this. Hence, the map of
landscape connectivity conservation priorities that is considering fast and large species for the
medium-term will look very different than one considering species that are slow and small for the
long-term.

Resistance Surfaces

We first created a Structural Resistance Surface Basemap for the Mojave that was similar in
methods and appearance to the Enhanced Resistance Surface of the Modoc Plateau, except it
did not include the Human Modification product. This dataset provided an estimate of landscape
intactness, (i.e. condition), based on the extent to which human impacts such as urban
development, linear development, natural resource extraction, and agriculture have disrupted
the landscape across the study site.

This dataset was originally created to characterize anthropogenic barriers to small animal
movement and emphasizes liner features in terms of impact on the landscape. Additional model
refinements include stratifying road impacts by TIGER class, (e.g. different weighting for
different types of roads), and taking distance to urban development into account.
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This 270 sqg. m resolution dataset, updated November 2016, was created using EEMS. This
spatially-explicit logic modeling hierarchically integrates numerous and diverse datasets into
composite layers, quantifying information in a continuous rather than binary fashion.

Input data used to create this version ranged in currency from 2011-2015; the majority of data
portrayed the more recent condition of the landscape.

The EEMS model integrates agriculture development (from FRAP Vegetation, and CDL
Cropscape), urban development (from LANDFIRE EVT and NLCD Impervious Surfaces),
polluted areas (from NHD treatment ponds and EPA Superfund and Brownfield sites), linear
development (OHV routes from owlsheadgps.com, roads from TIGER (broken down by type),
utility lines, railroads, and pipelines from various state and BLM sources), point development
(communication towers from the FCC), and energy and mining development (from the state’s
Office of Mine Reclamation mine dataset, larger mine footprints, state geothermal wells, USGS
wind turbines, solar footprints, renewable projects in development, oil refineries and state oil/gas
wells).

Small Species, Demographic
(Note, to view this layer, click on the above hyperlink, then open the layers tab, then “Mojave
Resistance surfaces Used.”)

We started with the above Structural Resistance Surface Basemap. Then Playa boundaries
were smoothed and burned into the combined layer (i.e. the Maximum value of the two layers
was used), since most animals do not cross playas regardless of their high terrestrial intactness.

Small Species, Climate Lens

The above layer was used as a starting point, and then the Climate Refugia Value, which is the
combination of Physical Refugia and Climate Stability described below, was added in a
weighted sum to the above layer using a low weight (0.25 vs 0.75). The result was normalized
to span from 0-1. The justification for this was that in mapping linkages for the long term, those
that have a high climate refugia value are more important linkages in the long term than those
that do not, all else being equal.

Large Species, Demographic

We started with the Human Modification Surface by David Theobald and team. This surface’s
patterns are smoother then the aforementioned Structural Resistance Surface Basemap,
making it more suited to larger animals and those with larger home ranges. Then Playa
boundaries were smoothed more broadly than for small species, to allow fuzzy values further
from the perimeters, and this layer was burned into the combined layer, since most animals do
not cross playas regardless of their high terrestrial intactness.

Large Species, Climate Lens
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As per the small species surface, the above layer was used as a starting point, and then the
Climate Refugia Value, which is the combination of Physical Refugia and Climate Stability
described below, was added to the above layer using a low weight (0.25 vs 0.75). The result
was normalized to span from 0-1.

Mojave Ground Squirrel, Demographic
(Note, to view this layer, click on the above hyperlink, then open the layers tab, then “Mojave
Resistance surfaces Used.”)

The small species, demographic resistance surface (Structural Resistance surface basemap
with playas burned in) was combined with the rescaled and inverted Mojave Ground Squirrel
species distribution model using a mean value.

Mojave Ground Squirrel, Climate Lens

The small species, climate lens resistance surface, (e.g. Structural Resistance with playas
burned in as more resistance, and refugia burned in as less resistance) was combined with the
rescaled and inverted Mojave Ground Squirrel species distribution model using a mean value.

Desert Tortoise, Demographic

The small species, demographic resistance surface (Structural Resistance surface basemap
with playas burned in, having a range from 1-1000) was combined with tortoise fence locations,
which were burned in as extremely high resistance (10,000), making them essentially
impassable. Then this layer was combined with the rescaled and inverted Desert Tortoise
species distribution model using a mean value.

Desert Tortoise, Climate Lens

The small species, climate lens resistance surface, (e.g. Structural Resistance with playas
burned in as more resistance, and refugia burned in as less resistance) was combined with
tortoise fence locations, which were burned in as extremely high resistance, making them
essentially impassable. Then, this layer was combined with the rescaled and inverted Desert
Tortoise species distribution model using a mean value.

Cores

Large Species Core Areas

To generate the cores, the large species demographic resistance layer was combined with the
Statewide Terrestrial Intactness layer, using a mean value, and then normalized to range from
-1to 1. This was then clipped to the extent of the analysis, and then all values over 0.5 were
extracted, converted to polygon, and buffered by 1 meter, so areas that touch at the corner
become connected. All areas over 10 sq. km were then selected. There is a secondary output
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made for every core area file, not used in this analysis, which is those core areas that are also
protected in some way, including conservation easements.

Small Species Core Areas

The small species demographic resistance layer was combined with the Statewide Terrestrial
Intactness layer, using a mean value, and then normalized to range from -1 to 1. This was then
clipped to the extent of the analysis, and then all values over 0.5 were extracted, converted to
polygon, and buffered by 1 meter, so areas that touch at the corner become connected. All
areas over 4 sq. km were then selected. There is a secondary output made for every core area
file, not used in this analysis, which is those core areas that are also protected in some way,
including conservation easements.

Mojave Ground Squirrel Nodes

We use the concept of nodes in this connectivity model, rather than traditional concept of “core
areas.” We augmented our MGS observations database (elsewhere, based on CNDDB and
BISON, post 2000) with post-2000 observations from Rich Inman. The Inman data have been
submitted to CNDDB, but not integrated yet. We mapped all these locations, and buffered each
point by 100,000 cost-distance meters. Hence, we used the MGS resistance surface, which
ranges from 1-1000. So 100 m at the lowest resistance would be a cost distance of 100, and of
the highest resistance would be a cost distance of 100,000. Hence observations in really high
quality habitat, according to the species distribution model and/or the input resistance surface
basemap, result in a relatively large area node. Observations in poor habitat will have a small
area node. Overlapping nodes were dissolved, and those that were less than 1 sq. km. were
removed.

Desert Tortoise Nodes

Desert Tortoise Occurrence Points by Date (2000 - 2016), were merged with observations from
the Desert Tortoise Distance surveys. This yielded a larger number of observations compared
to MGS, so we made an observation density surface based (available upon request) on a focal
mean of a 2.5 km radius about every cell on the landscape. Upon examining the results we
then selected out the cells valued greater than 7 observations per surrounding circle (i.e. areas
with higher densities of observations), and areas greater than 2.5 sq. km. These were classified
as source core areas.

We also recognized that there were observations on the periphery, away from the cores, that
are important for tortoise ecology. These were classified as destination areas. We hand
selected these areas and used a similar method as for MGS. We buffered each of these points
300,000 cost-distance meters. Hence, we used the Desert Tortoise resistance surface, which
ranges from 1-10,000. So 100 m at the lowest resistance would be a cost distance of 100, and
of the highest resistance would be a cost distance of 1,000,000. Hence observations in really
high quality habitat, according to the species distribution model and/or the input resistance
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surface basemap, result in a relatively large area node. Observations in poor habitat will have a
small area node.

These two types of nodes were combined into a single layer, with all the source corea areas
given an “expert core area value” of 1, and the destination areas an “expert core area value” of
0. This factor was included in the linkage mapper algorithm, thereby given higher value to
linkages that connect two source cores rather than a source core and a destination. Linkages
connecting two destinations got the least weight for this criterion. (In future iterations, ecav can
be a function of the density of observations.)

Climate Inputs

Climate Stability

First, we used California Climate Exposure (Ensemble), 2046-2075. This is the change in
predicted climate variables (aggregated to a single score) for every place on the landscape from
what is "normal” (i.e. the climate there from 1971- 2000) compared to the future (the average
from 2046-2075).

This product was normalized such that the highest value on the landscape becomes a 1, the
lowest value becomes a 0, and all others scale linearly. Then the product was inverted, such
that the 1 becomes a 0, and vice versa. We chose the name "Climate Stability" instead of
inverted Climate Exposure. This normalized raster layer can be viewed here.

Physical Refugia

The following Input data (and methods) were combined according to this logic model (press
download or view if it pops up pixelated): Terrain ruggedness, Solar radiation, Riparian
vegetation, Waterbodies, Distance to water, and Spring locations.

The EEMS enabled vector coverage is viewable here.

The product was converted to raster using field: Physical _Refugia_Union_Wtd Quarters_Fz
and then normalized such that the highest value became 1, the lowest 0, and all other values
scaled accordingly. This normalized raster layer can be viewed here.

Note, we combined the above two in an evenly weighted sum to get the Climate Refugia Value
layer used as the input in Linkage Priority Tool.

Climate Signature

The_climatic water deficit of the California Basin Characteristics model was used as an input.
Climatic water deficit is potential evapotranspiration minus actual evapotranspiration.
Evapotranspiration (ET) is the sum of evaporation and plant transpiration from the Earth's land
and ocean surface to the atmosphere. Potential evapotranspiration (PET) is how high this sum
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would be if there was unlimited water available from the plants and soil. Hence, hot, dry areas
have a higher PET than ET, and thus, get a high cwd. This metric integrates precipitation and
temperature climate variables. The way this is used is described in the linkage priority mapper
algorithm is described below.

Additional West Mojave Results

Results from the Four Structural Connectivity Analyses
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In addition to the results displayed above, additional West Mojave results are in the Outputs
Folder on Data Basin (you may need to scroll down the page). The parameter values are in

Appendix D.

Results from the Focal Species Connectivity Analyses

Here are the climate-wise results for the two focal species.
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Appendix C: Additional Methods and Results for the
Sacramento Valley

Resistance Surfaces

Structural Connectivity Resistance Surfaces

The two structural connectivity resistance surfaces for the Sacramento were created very
similarly to the Modoc resistance surfaces, except they made two additional assumptions. First,
they assumed that when roads cross over creeks or rivers, there is usually an overpass of some
sort that most animals often pass under. Hence, these cells were mapped with less resistance
(0.4 times) than the road cells to either side of the underpass. Here is the layer of “underpasses”
(i.e. bridges over water, excluding canals). Second, for two of the typologies, we assumed that
some species find refuge in tree canopy cover in the valley floor. We assumed that if there are
no other tree copses or stands around, then the copse in question is more valuable to species
movement than if there are lots of copses or even a forest around. The Canopy Cover
‘Stepping Stone” layer methods are summarized in the resistance surface logic model, provided
in small print in Figure 31, with a more legible online online version of the resistance surface
logic model provided here.
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Figure 31 This is an overview logic model.
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(Note: We tried using culverts, but found that they were not consistently digitized throughout the
study area. Some long roads had no culvert data.) As of now, the lower value of the resistance
surface is 10 (with a maximum of 1000). If additional data is gathered in the future that can
classify extra high quality habitat, then these values can range from 1-10 and be combined into
these resistance surfaces.

For the Sacramento Valley results, all resistance surfaces are mapped along with the
results for that particular focal species or structural connectivity typology.

For example, Connectivity for the “Large, Canopy preferring Species” Typology includes the
following (Figure 32) if the pre-loaded sub-layers are turned off and Resistance is turned on:

DATA'@, BASIN ~ e A = Conservation Biology Institute - Support = [E_ﬁ English =

Legend ~

~ Resistance vStructural
enhanced resistance w Canopy
4 Considerations w Underpasses
no culverts w HumanMod

i Rel
Importance Overlay
V1706070641

- High : 1000

i Linkage value of
Every Cell v1706070941
Combines Least Gost

&

= re Are:
Value v1706070941 cav
normalized

€ 0941
Linkages and Pinchpoints
Layer

i Connectivity Value

ombine
Linkage and Pinchpoint
Values Layer

»@ Basemaps

asour | Terusoruse | support services | cowmacrus | powate

Figure 32 Enhanced Resistance Surface with Canopy Considerations
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Figure 33 Enhanced Resistance Surface without Canopy Considerations

Focal Species Resistance Surfaces

Bobcat

Enhanced Resistance without canopy considerations was used. It was rescaled to 1-1000, then
multiplied by 0.001, so it spanned from ~0 to 1. The Bobcat California Wildlife Habitat
Relationship model (CWHR), was also scaled to 0-1. These two were multiplied, and the result
was rescaled linearly to range from 10-1000.

Badger

Enhanced Resistance without canopy considerations was used. The Badger CWHR was scaled
to 0-1 then rescaled linearly to range from 10-1000. The mean value of these two layers was
used.

Mule Deer

Enhanced Resistance with canopy considerations was used. The Mule Deer species distribution
model (SDM) was aggregated to 270 m cells, scaled to 0-1 then rescaled linearly to range from
10-1000. The mean value of these two layers was used.

Tule Elk

The Tule Elk Species Distribution Model obtained from Patrick Huber was rescaled linearly to
10-1000, and combined using a mean with the Enhanced Resistance with Canopy
Considerations.
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Core Areas

All core areas are mapped along with the results for that particular focal species or
structural connectivity typology.

Structural Connectivity Nodes (i.e. “Cores”)

Nodes for the large species typology (not considering canopy structure)

To identify the nodes, the resistance surface was first smoothed slightly, taking the mean value
of a circle of 3 cell radius around each cell, and giving it that value. Then, all cells under 400
were selected. Also, all cells less than 400 of the original (non-smoothed) resistance surface
were selected. The two results were combined in a union. The resulting areas that were
greater than 800 ha (1976 acre) were then selected. (Note: this typology is sometimes referred
to in Data Basin as “open habitat preferring species typology”, but this is a slight misnomer, as it
is only in comparison to the canopy preferring typology.)

Nodes for the small species typology (not considering canopy structure)
To identify these nodes, the same methods were used as for large species, except the final
selection was for all areas greater than 100 ha (247 ac) instead ot 800 ha. This is because
smaller species need less high quality habitat to form a viable metapopulation.

Nodes for the large species, canopy preferring typology

This method was started by mirroring the one for large species, except that it used the
resistance surface that assumed canopy structure (e.g. riparian forest) had lower resistance to
movement than open habitat, all else being equal. But since these high canopy cover areas
ended up with a lower resistance value, the method yielded a set of nodes with a much higher
mean area. In order to make the nodes about the same sizes as the non-canopy preferring
typology, all unioned cell less than a value of 300 were selected, not 400." The resulting areas
that were greater than 800 ha (1976 acre) were then selected.

Nodes for the small species, canopy preferring typology

To identify these nodes, the same methods were used as the large species, canopy preferring
typology, except the final selection was for all areas greater than 100 ha (247 ac).

Focal Species Core Areas

Bobcat Core Areas

' In future applications, if more similar outputs are desired, then using
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The Bobcat resistance surface intermediate product that ranged from 0-1 was selected to
include only values greater than or equal to 0.3. Then the resulting areas greater than 6 sq. km
were selected.

Badger Core Areas

The Badger CWHR was scaled to 0-1, and all areas greater than 0.66 were selected. All areas
greater or equal to 5 km? were then selected.

Mule Deer Core Areas

The Mule Deer Species Distribution Model was smoothed slightly to assign each cell the mean
value of all cells within a 3 cell radius. Then this surface was normalized to range from 0 to 1.
Then all cells greater than 0.15 were selected. Then all resulting polygons greater than or equal
to 5 sq. km were selected.

Tule Elk Core Areas

Suitable Tule EIk core areas obtained from Patrick Huber were combined in a simple union with
the known Tule Elk areas obtained from CDFW. Source data may be available upon request.

Other Focal Species

Giant Garter Snake and Red Fox

These species were also modeled but due to time constraints were not finalized nor integrated
with the other four focal species. They were not required by the client or the contract. But they
may be useful for biodiversity conservation and their methods, inputs, and results may be
available upon request, depending on time availability.
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Additional Results for the Typologies and Focal Species
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Figure 35: “Small, Open Habitat Preferring Species” Typology (Climate-wise)
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Figure 37: “Small, Canopy Preferring Species” Typology Connectivity (Climate-wise)
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Figure 38: Badger Connectivity (Climate-wise)
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Figure 39: Mule Deer Connectivity (Climate-wise)
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Figure 40: Bobcat Connectivity (Climate-wise)
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Figure 41: Tule Elk Connectivity (Climate-wise)
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Appendix D: Key Parameter Values Used

Key parameter values used for the three studies are on the table in the following pages.

The google spreadsheet is more legible and available here, and the temporary .pdf is slightly
higher quality and is here.
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