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Abstract

Recent studies suggest that species distribution models (SDMs) based on fine-scale climate data may provide mark-

edly different estimates of climate-change impacts than coarse-scale models. However, these studies disagree in their

conclusions of how scale influences projected species distributions. In rugged terrain, coarse-scale climate grids may

not capture topographically controlled climate variation at the scale that constitutes microhabitat or refugia for some

species. Although finer scale data are therefore considered to better reflect climatic conditions experienced by species,

there have been few formal analyses of how modeled distributions differ with scale. We modeled distributions for 52

plant species endemic to the California Floristic Province of different life forms and range sizes under recent and

future climate across a 2000-fold range of spatial scales (0.008–16 km2). We produced unique current and future

climate datasets by separately downscaling 4 km climate models to three finer resolutions based on 800, 270, and

90 m digital elevation models and deriving bioclimatic predictors from them. As climate-data resolution became

coarser, SDMs predicted larger habitat area with diminishing spatial congruence between fine- and coarse-scale pre-

dictions. These trends were most pronounced at the coarsest resolutions and depended on climate scenario and spe-

cies’ range size. On average, SDMs projected onto 4 km climate data predicted 42% more stable habitat (the amount

of spatial overlap between predicted current and future climatically suitable habitat) compared with 800 m data.

We found only modest agreement between areas predicted to be stable by 90 m models generalized to 4 km grids

compared with areas classified as stable based on 4 km models, suggesting that some climate refugia captured at

finer scales may be missed using coarser scale data. These differences in projected locations of habitat change may

have more serious implications than net habitat area when predictive maps form the basis of conservation decision

making.
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Introduction

Species distribution models (SDMs) are currently the

most widely used of scientific approaches to examine

potential climate-change impacts to biodiversity. These

models, which are based on the statistical association

of species distributions with mapped climatic and

other environmental factors, have many well-known

limitations (Wiens et al., 2009; Dawson, 2011). One

major concern is that the spatial scale of climate data

used in most SDMs may be inadequate due to the

coarse resolution of global climate models (GCM) or

downscaled derivatives of those models (Seo et al.,

2009). In rugged terrain, climate grids produced at

1–100 km scale may be too coarse to capture topo-

graphically controlled climate variation at 10–100 m

scale that can exert a strong influence on species distri-

butions (Lookingbill & Urban, 2003; Ashcroft et al.,

2009; Dobrowski et al., 2009). These local topoclimatic

habitats may need to be accounted for when evaluating

climate-change impacts on biodiversity as they may

constitute refugia for local populations and increase

habitat connectivity for dispersal and migration (Jack-

son & Overpeck, 2000; Ackerly et al., 2010; Austin &

Van Niel, 2011).

Two recent studies have shown that SDMs based on

fine-scale climate projections provide markedly differ-

ent estimates of climate-change impacts than coarse-

scale projections; however, these studies only examined

alpine plants and reached different conclusions. One

study predicted greater persistence of suitable habitat
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under climate-change scenarios using finer resolution

data (Randin et al., 2009), whereas the other predicted

greater persistence of habitat under warming scenarios

using coarser data (Trivedi et al., 2008). To help clarify

the effect of model resolution on climate-change impact

analysis, we modeled current and projected future

ranges of 52 endemic plant species over the California

Floristic Province, a large, topographically heteroge-

neous study area. Species were selected to represent a

variety of life forms and range sizes. We analyzed the

predicted distributions across a 2000-fold range of spa-

tial resolutions (0.008–16 km2) by independently down-

scaling 4 km climate models to 800, 270, and 90 m. We

compared modeled distributions to ask “how fine-scale

do climate projections need to be to capture the strong

topoclimatic control on plant species distributions?”

Our specific questions include:

1 How does the extent and location of modeled suit-

able habitat under current climate depend on the

spatial resolution of the climate data?

2 How does the predicted distribution of climate-

change refugia (areas of future climatic suitability

within the current species range) vary as a function of

the scale (spatial resolution or grain) of climate grids?

We hypothesized that:

(a) On average, the predicted extent of modeled suit-

able habitat would increase with coarser climate data in

a given time period owing to spatial generalization,

and its location would have diminishing spatial con-

gruence (overlap) with the area of suitable habitat pre-

dicted at the finest scale;

(b) climate-change refugia are more likely to be

detected at finer spatial resolutions that better represent

topographic effects on climate.

Materials and methods

Future climate scenarios

Global climate models were selected that realistically represent

the spatial structure of precipitation and important orographic

features, accurately simulate California’s recent historical cli-

mate, and differ in their sensitivity to greenhouse gas forcing

(Cayan et al., 2008). These were the Parallel Climate Model

(PCM) and theNOAAGeophysical Fluid Dynamics Laboratory

(GFDL) CM2.1 model from the IPCC (2007) Fourth Assessment

series. Greenhouse gas emissions scenarios examined were A2

(medium–high) and B1 (low) emissions (Nakićenović et al.,

2000). The B1 scenario assumes that global CO2 emissions peak

at approximately 10 Gt yr�1 in the mid-21st century followed

by a leveling of the concentrations before dropping below cur-

rent levels by 2100, resulting in a doubling of CO2 relative to its

preindustrial level by the end of the century (approximately

550 ppm). Under the A2 scenario, CO2 emissions continue to

climb throughout the 21st century, reaching almost 30 Gt yr�1.

Climate-data downscaling and bias correction

Climate model outputs included daily and monthly tempera-

ture and precipitation maps through the end of the 21st cen-

tury. These coarse-scale (275 km) grids of projected climate

were first statistically downscaled to 12 km resolution using the

method of constructed analogs (Hidalgo et al., 2008). Theywere

then spatially downscaled from 12 km with digital elevation

grids to four resolutions: 4218 m (hereafter ‘4 km’), 800, 270,

and 90 m. The data were first downscaled to 4 km and bias

corrected using historical climate data for 1950–2000 avail-

able for the USA from PRISM (Daly et al., 1994) as monthly

maps (http://www.prism.oregonstate.edu/). The downscaling

approach applied a spatial Gradient and Inverse Distance

Squaredweighting (GIDS) tomonthly point data by developing

multiple regressions for every fine-resolution cell for every

month. Parameter weighting is based on the location and eleva-

tion of the coarse-resolution cells surrounding each fine-resolu-

tion cell to predict the climate variable of the fine-resolution cell

(Flint & Flint, 2012; modified from Nalder & Wein, 1998). As

discussed in Flint & Flint (2012), this procedure improves the

spatial representation of air temperature over the landscape

because at the finer scale it does not average the air temperature

over the large area of the coarser scale and allows for the calcu-

lation of local adiabatic lapse rates to extrapolate to higher and

lower elevations than the coarser averaged dataset. This is

essentially a ‘draping’ of the climate variable over the land-

scape, which allows for comparisons of vegetationwith air tem-

perature estimates that are potentially more accurate at the

finer scale than the coarser scale. The modified GIDS technique

does not introduce additional uncertainty in the downscaling

process, and may indeed improve the estimate of the climate

variable by incorporating the deterministic influence (such as

lapse rates or rain shadows) of location and elevation on cli-

mate. The details of the methodology and evaluation of uncer-

tainty are discussed in Flint & Flint (2012). We derived mean

values from downscaled grids of historical climate for the

period 1971–2000 and for the future projections for the period

2071–2100 at each resolution.

Instead of including a large number of strongly correlated

bioclimatic variables, we analyzed a small set of temperature

and moisture variables (Table 1) expected to be physiologically

relevant to (Austin & VanNiel, 2011) and found to be associated

with western plant distributions (Stephenson, 1998; Rehfeldt

et al., 2006). These included minimum temperature of the cold-

est month (T_min), maximum temperature of the warmest

month (T_max), mean temperatures of the wettest (T_wet) and

driest (T_dry) quarters, growing degree days for days >5 °C,
mean precipitation of the wettest (Ppt_wet) and warmest

(Ppt_warm) quarters, and an aridity index [the ratio of annual

precipitation to potential evapotranspiration (PET)]. Growing

Degree Days (GDD5) is a cumulative annual sum of average

temperature per day above a base temperature (5 °C).We calcu-

lated GDD5 using minimum and maximum monthly tempera-

tures and the number of days per month (see Sork et al., 2010).
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Potential evapotranspiration was calculated from modeled

insolation using topographic shading (Tian et al., 2001;McCune

& Dylan, 2002) and temperature using the modified Penman–

Monteith methodology presented in Kay&Davies (2008).

Note that because local slope and aspect are used to calcu-

late insolation the aridity index is especially sensitive to local

terrain variation. Aridity is also the only bioclimatic variable

analyzed that depends on modeled light regime, a factor that

is important for modeling plant distributions (Davis & Goetz,

1990; Austin & Van Niel, 2011).

At each scale, temperature variables were moderately to

highly correlated at the locations represented by our species

locality data. For example, at 90 m for the period 1950–2000,

squared Pearson correlations (r2) among temperature vari-

ables ranged from 0.35 (T_max vs. T_min) to 0.96 (T_min vs.

T_wet) (n = 70 989). Squared correlations between tempera-

ture and precipitation variables were much lower, ranging

from 0.03 (T_max vs. Ppt_wet) to 0.15 (GDD5 vs. Ppt_wet).

Aridity was most strongly correlated with Ppt_wet (r2 = 0.64).

Species data

Fifty-two species (Table 2) were selected because their current

ranges, or most of their ranges, are confined to the California

Floristic Province. They were also chosen to represent a vari-

ety of range sizes (narrowly vs. widely distributed), life forms

(trees, shrubs, herbs), and habitats representing different

climate subregions (coastal, foothill, lower and upper mon-

tane). Range size was approximated by summing the area of

ecological subregions within which species occurrences fell

(Fig. 1). Species presence data came from a database of more

than 82 000 locations that was compiled for ongoing studies of

climate-change impacts on California plant species (Viers

et al., 2006; Hannah et al., 2008). The number of presences ran-

ged from 9 to 6359 at 90 m resolution for these 52 species, and

one observation per grid cell was used for modeling at each

resolution (Table 2). The majority of these occurrence records

came from vegetation plot surveys conducted since the mid-

1990s and their locational precision is on the order of tens of

meters, well within the finest resolution considered in this

study. Some of the records came from older natural history

collections (�1%) or surveys (18%) and therefore their loca-

tional uncertainty is on the order of hundreds of meters, con-

tributing some noise to the analyses.

Species distribution modeling

We used the MaxEnt software (Phillips et al., 2006; Elith et al.,

2011) for species distribution modeling because this method is

particularly effective when species occurrence data comprise

presence-only records, small samples, and are not a probability-

based sample (Elith et al., 2006; Phillips & Dudı́k, 2008). Seventy

percent of occurrence data were used for model training and

30% for testing, and this process was repeated five times using

bootstrap sampling from all occurrence data. We used the aver-

age of the fivemodels for our final analyses.We conducted jack-

knife tests of predictor variable importance. To determine

variable importance, in each iteration of the training algorithm

the change in regularized gain is added to the contribution of

the corresponding variable. That means the higher contributing

parameters are used more frequently than others, but does not

necessarymean they aremore important biologically.

Ten thousand random background points were used for

each model and were drawn from a 486 230 km2 model

domain based on river basin boundaries that extended up to

130 km outside of California (Fig. 1). At the 4 km scale the

random sample covers 33% of the sample domain vs. 0.01% of

the domain at the 90 m scale. The large difference in back-

ground sampling rate at different scales should not affect

model parameterization. This is because the background sam-

ples in MaxEnt are considered random samples where the

species could be present or absent, as opposed to ‘pseudo-

absences’ (Phillips & Dudı́k, 2008). However, variation in

background sampling will cause differences in model

goodness-of-fit measures such as the area under the receiver-

operating curve (AUC), which treats background samples as

absences. The treatment of background samples as absences is

certainly less appropriate for wide-ranging species at the 4 km

scale. We report AUC values as an indication of model fits

(Fielding & Bell, 1997), but do not compare AUC values across

scales. Although there have been criticisms of the use of AUC

to evaluate SDMs (Lobo et al., 2008), and AUC based on a

random background sample many be inflated (Hijmans, 2012),

it is a useful metric for comparison with other studies (Phillips

et al., 2006; Elith & Graham, 2009).

For each species, one model was developed at each scale

using climate data from the period 1971–2000. This model was

then projected to four sets of future climate maps (two GCMs,

Table 1 Bioclimatic variables used as predictors

Bioclimatic variable

description Abbreviation Units

Max temperature of

warmest period

T_max °C 9 10

Min temperature of

coldest period

T_min °C 9 10

Mean temperature of

wettest quarter

T_wet °C 9 10

Mean temperature of

driest quarter

T_dry °C 9 10

Growing degree days

above 5 °C*

GDD5 °C 9 10

(cumulative)

Precipitation of wettest

quarter

Ppt_wet mm

Precipitation of warmest

quarter

Ppt_warm mm

Aridity index (annual

ppt/PET)*
Aridity 9100

Bioclim = conventional names from WORLDCLIM (Hijmans

et al., 2005) (www.worlclim.org) based originally on ANUC-

LIM and BIOCLIM (Busby, 1986). *Not standard Bioclim vari-

ables. Units multiplied by 10 for faster processing using

integer (not floating point) data while retaining precision.
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two emissions scenarios) at each of four scales. The threshold

criterion used for analyses where binary maps of suitable vs.

unsuitable habitat were required was the threshold where

sensitivity equals specificity (Freeman & Moisen, 2008).

R Development Core Team, 2012 packages rgdal (Keitt et al.,

2010) and raster (Hijmans & van Etten, 2011) were used for

thresholding, comparing, and analyzing maps.

The resulting models, based on bioclimatic variables only,

predict climatically suitable future habitat conditioned on

present distributions and climate. Although terrain effects are

taken into account in the aridity index, these models do not

include other factors known to limit plant distributions, such

as substrate and landform that affect nutrient and water avail-

ability (Franklin, 1995). The reason we restricted our analysis

to bioclimatic variables was so that the effect of climate-data

downscaling on the spatial characteristics of predictions could

be examined independently of other factors (e.g., the fixed

scale of other potential predictor maps).

Analysis

Generalized linear mixed models (GLMMs) were used to

evaluate the effects of scale on attributes of SDM predictions

describing habitat area, change in area, and spatial overlap

between present and future scenarios (Fig. 2), and to deter-

mine if these relationships varied with species characteristics

(range size, life form, and habitat); we used species as the ran-

dom effect (multiple models comprising repeated measures

on species), as in similar studies (Elith et al., 2006). General-

ized linear mixed models were Gaussian unless otherwise

noted.

Predicted habitat area (current and future) and its projected

net change, as well as range ratio and spatial congruence

(based on current climate) were the response variables used to

examine the effects of scale and species characteristics on the

extent and location of modeled suitable habitat (based on

the thresholded SDMs). Scale and species characteristics were

the fixed effects. The range ratio was defined as the ratio of

area predicted suitable at the coarser scales to the area pre-

dicted suitable at the finest scale for (a) 270 m vs. 90 m, (b)

800 m vs. 90 m, and (c) 4 km vs. 90 m. For this right-skewed

response variable, a Poisson GLMM was estimated. For the

same three pairs of spatial resolutions, the spatial overlap

between suitable habitat at coarser scales vs. the finest was

described by the spatial congruence index (based on a Dice

Sorensen similarity measure, Legendre & Legendre, 1998),

Table 2 Study species, grouped according to range size class and life form. Numbers of occurrences at 90 m resolution are shown

in parentheses. Although number of observations declined as resolution coarsened, it only fell below 9 (to 5 and 7) for two species

at 4 km resolution

Life Form

Range

Narrow <10 000 km2 Intermediate 10 000–50 000 km2 Broad >50 000 km2

Herb Acanthomintha ilicifolia (71)

Chorizanthe orcuttiana (9)

Deinandra conjugans (40)

Delphinium hesperium (24)

Eryngium aristulatum (66)

Galium angustifolium (89)

Ptilagrostis kingii (17)

Scutellaria californica (120)

Erigeron petrophilus (115)

Poa stebbinsii (17)

Shrub Arctostaphylos rainbowensis (51)

Arctostaphylos rudis (11)

Ceanothus megacarpus (471)

Ceanothus verrucosus (87)

Quercus dumosa (173)

Viguiera laciniata (25)

Adenostoma sparsifolium (243)

Arctostaphylos glandulosa (267)

Arctostaphylos mewukka (192)

Artemisia cana bolanderi (19)

Artemisia rothrockii (18)

Ceanothus greggii perlexans (205)

Ceanothus tomentosus (117)

Ericameria ericoides (49)

Keckiella antirrhinoides (56)

Quercus sadleriana (703)

Ribes lasianthum (22)

Salvia leucophylla (25)

Xylococcus bicolor (133)

Ceanothus oliganthus (76)

Chamaebatia foliolosa (859)

Corylus cornuta californica (2161)

Hazardia squarrosa (420)

Heteromeles arbutifolia (1870)

Lepechinia calycina (72)

Pickeringia montana (35)

Rhamnus rubra (157)

Ribes malvaceum (87)

Trichostema lanatum (83)

Tree Cupressus forbesii (14)

Juglans californica (86)

Picea breweriana (218)

Pseudotsuga macrocarpa (41)

Quercus engelmannii (112)

Abies magnifica (3355)

Aesculus californica (441)

Pinus attenuata (427)

Pinus lambertiana (6359)

Pinus sabiniana (1875)

Quercus lobata (527)

Torreya californica (88)

Umbellularia californica (1293)

Herbs include perennials and annuals and some small stature perennial subshrubs.

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12051
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2a/(2a + b + c), where a is the area mapped as suitable at both

resolutions (overlap), b is the area mapped suitable at the

coarse resolution but not fine, and c is the area mapped suit-

able at the fine resolution but not coarse. High values of the

index indicate higher degrees of spatial congruence.

A potential cause of the larger predicted ranges observed

with coarse climate data (Seo et al., 2009) is that response func-

tions of species occurrence to bioclimatic predictors estimated

from coarse-scale data may be broader and flatter, or less

bounded (wider tolerances, less distinct limits, and optima

and/or lower magnitude optima), than those estimated from

fine-scale data. This is because coarse-scale data average the

climate variables over broader areas, thus potentially missing

some of the fine-scale variability that is relevant to the species’

physiological limitations. We examined this hypothesis by

comparing the 90 and 4 km marginal response curves from

MaxEnt for each of the 52 species across the eight bioclimatic

variables (examples shown in Figure S1). The marginal

response curves show how the logistic prediction of habitat

suitability changes as each bioclimatic variable is varied, keep-

ing all other predictor variables at their average value. To pro-

vide a summary of response curve shape change with scale,

we categorized the 416 comparisons of fine- and coarse-scaled

response curves as either: response curves from models using

fine-scale data changed to more generalized response curves

from models using coarse-scale data (i.e., changing from uni-

modal to monotonic, lower peak, broader range) or not (no

change in shape, changes not as above), and weighted the tally

by variable importance.

At each scale, the net change in habitat area between pres-

ent and future climate predictions, a measure of predicted

Fig. 1 Study area, showing the model domain (encompassing

the state of California), occurrence data for an example species

(Pinus sabiniana), and geographic units within the state of

California (Floristic subregions) used to form proxy ranges

(for assigning species to range size classes).

(a) (b)

(c) (d)

Fig. 2 Predicted habitat distribution for Pinus sabiniana in the

modeling domain (Fig. 1), current vs. end of century, based on

the Geophysical Fluid Dynamics Laboratory climate model and

A2 emissions scenario, comparing predictions of (a) stable, (b)

lost, and (c) gained (new) range based on 90 m vs. 4 km climate

data. White, predicted by both 90 m and 4 km models; black,

predicted by 90 m only; dark gray, predicted by 4 km only.

Figure (d) compares end-of-century distribution predicted from

4 km climate data to a 4 km model where the cell is considered

suitable range if it contains any suitable habitat based on 90 m

climate data. Black cells in panel (d) are 4 km cells predicted

unsuitable based on 4 km climate data, but containing suitable

90 m habitat. White cells are predicted suitable based on 4 km

climate data and also containing suitable habitat at 90 m; dark

gray = predicted by 4 km climate data only (do not contain

90 m suitable habitat).

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12051
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habitat gain or loss (e.g., Fig. 2), was calculated for each spe-

cies. Net change is (b � c)/(a + c) where a is the area pre-

dicted suitable in both present and future (stable), b is the area

predicted suitable in future but not present (gain), and c is the

area predicted suitable in present but not future (loss). The

stable range, a measure of spatial habitat shift vs. stability,

was calculated a/(a + c). For these analyses, the response vari-

ables were percent net change and percent stable range, the

fixed effects were scale and species characteristics, and species

was again the random effect.

We examined the effect of scale on the predicted distribu-

tion of climate-change refugia using two different approaches.

First, we analyzed the proportion of mapped habitat predicted

to be stable at fine scale that was only predicted stable at fine

scale but not the next coarsest scale, i.e., was missed at the

coarser scale. We also analyzed the proportion of stable habi-

tat predicted to be stable at a coarser scale but not using the

finer scale predictors. As a second approach we quantified the

frequency with which habitats identified in fine-scale models

were nested within areas identified as suitable by coarse-scale

models. To do so, we compared species suitable habitat maps

that were based on 90 m models and generalized to 4 km reso-

lution (a 4 km cell was classified as suitable if 90 m habitat

was predicted to occur somewhere in the cell) vs. 4 km mod-

els (Fig. 2d). Here, we report results with 90 and 4 km range

forecasts based on the GFDL model and A2 emissions

scenario. Using these different approaches allows us to answer

two related questions: (1) How do the amount and distribu-

tion of potential habitat refugia differ between fine-scale and

coarser scale models? (2) How effective are coarse-scale mod-

els at predicting the same habitat as predicted by fine-scale

models?

Results

SDM accuracy based on AUC ranged from 0.776 to

0.999 (median 0.982; Table S2). Model AUC was nega-

tively correlated with number of species’ observations

(r = �0.90), and with range area (r = �0.72). This sug-

gests that, although number of observations, based on a

presence-only dataset from a composite of sources, was

not perfectly correlated with range size (r = 0.52; see

Table 2), it was correlated with the actual prevalence of

the species on the landscape. There was no relationship

between AUC and the proportion of species occur-

rences from older surveys (greater locational uncer-

tainty) at any resolution.

Area of suitable habitat, calculated from thresholded

spatial predictions of probability, tended to be slightly

larger for models that used coarser scale climate data

under current climate (only the difference between 90

and 4 km was significant; P = 0.001) and under future

climate for the A2 emissions scenarios (but not statisti-

cally significant) in both climate models (Table S1). Pre-

dicted net change in habitat area (the ratio of future to

current habitat area at each scale) trended toward

greater predicted loss at coarser scales under the GFDL

scenarios, but while PCM scenarios tended to predict

slight gains in habitat area, there was no apparent trend

with scale for PCM (Table S1), and no significant effect

of species characteristics.

The range ratio (ratio of area predicted suitable at

coarser scales to the area predicted suitable at 90 m res-

olution in a single time period) increased as resolution

coarsened for current climate (Fig. 3), especially at

4 km (P = 0.05). As resolution coarsened, the average

spatial congruence (overlap) with the 90 m predictions

also decreased from more than 80% at 270 m to about

65% at 4 km (significantly lower; P � 0.01; Fig. 3).

There was no significant effect of species characteristics

on range ratio, but spatial congruence was somewhat

lower for narrow-range species than for those in the lar-

ger range classes (P = 0.02), was higher for the shrubs

(P = 0.0002) and trees (P < 0.0001) than herbs, and did

not differ among habitats.

Although the predicted area of suitable habitat under

both present and future climates was generally larger

at coarser scales, the percent net change was not signifi-
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Fig. 3 Boxplots showing (a) the range ratio (ratio of suitable

habitat area predicted at coarser resolutions vs. 90 m) and (b)

spatial congruence (spatial overlap) of three coarser scales vs.

finest 90 m scale predictions for current climate. Heavy line

shows median, notches extend to ±1.58 interquartile range/√n
to indicate roughly a 95% confidence interval for the difference

in two medians, and hinges (edges of box) encompass the

quartiles. Whiskers extend to extremes of data (outliers shown

as circles).

© 2012 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12051

6 J . FRANKLIN et al.



cantly different among scales, shown for both GCMs

and the A2 emissions scenario (Fig. 4). Under the GFDL

A2 scenario, half of the models predicted net loss of

suitable habitat of 30% or more, while for a few (6) spe-

cies, large net gains were predicted at all scales (posi-

tive outliers in Fig. 4). The predicted net habitat

changes for PCM were smaller (median �13% for 90 m

and close to zero at the other resolutions). Predicted net

change was greater for narrow-ranging species and

lower for trees under both GFDL (P = 0.004 and 0.005,

respectively) and PCM (P = 0.006 and 0.0004) A2 sce-

narios, and did not differ among habitats.

There was a trend for the percent stable range to

increase with scale, from a median of 21% at 90 m to

28% at 4 km under the GFDL A2 scenario, and from

32% at 90 m to 49% at 4 km under the PCM A2

scenario; the trend is only significant for the PCM A2

scenario (P = 0.0341), and when scale is treated categor-

ically, only for the 4 km data is percent stable range

greater than for other scales (P = 0.009; Fig. 4). Pre-

dicted stable range was smaller for trees (P = 0.0009)

and larger for foothills species (P = 0.001) under the

PCM A2 scenario, but did not differ among range size

classes.

On average, about 20% of species’ climatically suit-

able habitat predicted to be stable using finer scale data

was missed by coarser scale models (e.g., Fig. 2) using

the most extreme GFDL A2 scenario (Fig. 5a). The aver-

age percent was slightly higher (24%; P = 0.10), so the

loss of information slightly greater, for 270 m vs.

800 m, compared with 90 m vs. 270 m or 800 m vs.

4 km. In addition, an average of 28% of habitat pre-

dicted to be stable using coarser scale data was not pre-

dicted to be stable using finer scale predictors (Figs 2

and 5b). This larger area of stable habitat predicted by

coarser scale data increased systematically with scale

and was greatest when going from 800 to 4 km resolu-

tion (42%), significantly greater than the other scale

comparisons (P � 0.01).

The predicted distribution of stable range based on

4 km models shows only moderate agreement with the

distribution of suitable habitat based on 90 m models

that occurred within 4 km cells (GFDL A2, mean con-

gruence = 0.41; Fig. 5c). Results vary widely among

species, but congruence tended to be lower for species

with small and medium range sizes (although the dif-

ference is not significant). Many of the predicted future

local (90 m scale) habitat areas fall outside of areas

90 m 270 m 800 m 4 km

0
50

0
10

00

Resolution

P
er

ce
nt

 n
et

 c
ha

ng
e

90 m 270 m 800 m 4 km

0
20

40
60

80
10

0

Resolution

P
er

ce
nt

 s
ta

bl
e 

ra
ng

e

90 m 270 m 800 m 4 km

0
20

0
40

0
60

0
80

0

Resolution

P
er

ce
nt

 n
et

 c
ha

ng
e

90 m 270 m 800 m 4 km
0

20
40

60
80

10
0

(a)              GFDL A2                  (b)              GFDL A2                  

(c)              PCM A2                  (d)              PCM A2                  

Resolution

P
er

ce
nt

 s
ta

bl
e 

ra
ng

e
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lel ClimateModel (PCM): (c) percent net change; (d) percent stable range. The A2 emissions scenariowas used for both climatemodels.
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modeled as stable range with 4 km data. Compared

with 4 km models, 90 m models for 38 of 52 species

predicted a greater extent of 4 km areas to include

locally suitable habitats both now and at end of century

(e.g., Fig. 2d).

On average, the most important environmental

predictor in SDMs for all species was precipitation of

the wettest period, and importance did not change

much with scale (Table 3). For the next most important

predictors, aridity, and mean temperature of the coldest

period, their importance tended to increase at the coar-

ser scales, although the variability in importance among

species also increased, and the scale differences were

not significant. For growing degree days above 5 °C
and precipitation of the warmest period, there was not

much of a change in importance with scale. The least

important predictors on average were mean tempera-

ture of the wettest, warmest, and driest periods, and the

importance of these predictors tended to diminish at

coarser scales. Response curves were broader and flat-

ter, or less bounded (indicating wider tolerances, less

distinct optima and/or lower magnitude optima) when

estimated from the 4 km vs. 90 m climate variables

about half of the time for the eight predictors when

weighted by variable importance (Table 3).

Discussion

There is growing concern over the potential effect of

climate-data spatial resolution when using SDMs to

predict biodiversity impacts of climate change. This is

because climate varies dramatically at local scales, and

this variation is likely to be reflected in spatial data. For

example, Ackerly et al. (2010) reported a difference in

range of January minimum temperatures of 3 °C using

800 m PRISM climate grids vs. 8 °C when topoclimatic

effects were modeled at a 30 m scale.

We found that there was a trend for SDMs using

coarser-resolution data to predict larger habitat area;

however, this difference was significant only when

finer scales were compared with 4 km. There was a dis-

proportionately greater difference in a number of mea-

sures of habitat area and location between 800 and

4 km predictions than between 90 and 800 m predic-

tions. These patterns, observed for a topographically

diverse region and a broad range of species types,

potentially suggest that there may be a threshold,

between 800 and 4 km, beyond which further spatial

generalization affects predicted habitat area. It may

therefore be advisable for users interested in climate-

change impacts on species distributions to use approxi-

mately 800 m or higher resolution climate data as it is

becoming increasingly available.

Furthermore, we found diminishing spatial con-

gruence (agreement or overlap) between fine- and

increasingly coarser scale predictions. The congruence

between fine- and coarse-scale predicted habitat was

lowest for narrow-range species. Therefore, these rare

or range-restricted species would be disproportionately

affected by generalization errors introduced by using

coarse-scale climate data to project habitat shifts under

climate-change scenarios. Seo et al. (2009) reported a

similar pattern using simple spatial averaging of climate
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Fig. 5 Boxplots showing (a) the percent of stable habitat under

climate change that is only predicted stable with the finer scale

climate data and not predicted to be stable with the coarser scale

data, (b) percent of stable habitat under climate change that is

only predicted stable with the coarser scale climate data and not

predicted to be stable with the finer scale data (calculated by

spatial overlay of habitat predicted stable at each scale), and (c)

frequency distribution for species of the proportion of those

4 km grid cells predicted to be stable by the 4 km model that

contain some habitat that is predicted stable by the 90 m model

(Geophysical Fluid Dynamics Laboratory A2 scenario).
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data. Our study confirms this trend using spatially

downscaled very high-resolution climate data and com-

paring them with moderate-resolution climate data

(4 km) that are widely available.

Although coarser scale models generally predicted

more habitat area than finer scale models, they also

potentially underestimate the extent of localized suit-

able habitats because many of those habitats were not

nested within areas classified as suitable at coarser

scale. In other words, it is possible that, especially in

mountainous terrain, 90 m data capture habitat

variability that represents opportunities for local

persistence that coarser scale data cannot resolve.

Our study used climate data that were statistically

downscaled to four resolutions spanning three orders

of magnitude, all of which would be considered fine-

scaled compared with climate data that have previ-

ously been used for climate-change impact projections

(e.g., 12–50 km). The 4 km scale averages ridge-to-ridge

variability in complex terrain, whereas the 800 m scale

begins to capture the larger topographic features, high-

lighting the differences between large valley bottoms

and ridgetops. The 270 m scale captures climate at the

hillslope scale in California, whereby several grid cells

generally describe an individual hillslope (Flint & Flint,

2012). If these spatial scales are accurately reflected by

the downscaling procedure, the 90 m scale may have

improved the correlation of climate with plant distribu-

tions, especially in locations with more topographic

complexity. Because the range of temperatures is small-

est at fine resolutions, this effect, whereas important at

a local scale, may not have been detectable at a regional

scale. Also, the ability to increase the resolution of

climate models by downscaling is limited in flat loca-

tions where adiabatic lapse rates are small, vs. locations

with topographic complexity, where rates are large

over short distances.

The strongest predictors of current distributions for

the study species were wet season precipitation and the

aridity index. Both wet season precipitation and aridity

are probably serving as surrogates for seasonal or

annual climatic water deficits that are of direct physio-

logical importance to plants (see also Stephenson, 1998;

Flint & Flint, 2012). Because we did not incorporate

soils information, we could not model seasonal soil

water balance across the landscape. Precipitation in the

study region is mainly frontal cyclonic, and presumably

less sensitive to local topography than temperature-

related variables (Dobrowski, 2011). Although the arid-

ity index exhibited greater sensitivity to spatial scale

than other variables in our study, its influence in the

distribution models increased at coarser scales. Given

its dependence on local hillslope orientation, this result

is contrary to our expectations and therefore difficult to

explain. Possibly, the 90 m scale is still too coarse to

resolve important local topographic facets that control

radiation regimes, whereas at slightly coarser scales,

the aridity index more effectively captures combina-

tions of larger scale terrain orientation and precipitation

gradients. Moreover, the downscaling methods used

here did not account for important drivers of local tem-

perature variation and soil moisture balance such as

shading from surrounding hillslopes, fine-scale cold air

pooling, and surface water convergence. We think it is

likely that congruence between fine and coarse scales

will decrease even further as local topoclimates are

resolved with finer topographic data and additional

refinements to the downscaling procedure.

Other studies have suggested that spatial averaging

in coarse-scale climate data may result in an imprecise

estimate of species response functions (Trivedi et al.,

2008; Randin et al., 2009). In this study, models esti-

mated from coarser climate data had broader, less

bounded environmental response curves about half of

Table 3 Median variable importance (percent contribution of environmental variable to the MaxEnt model) shown for species

distribution models (SDM) estimated at each scale. Range of values is shown in parentheses. Estimate of contribution of the each

variable is based on increase in regularized gain in each iteration of the training algorithm. % species broader = the percent of the

52 species whose response curves were broader when estimated from 4000 m data than from 90 m data, and % weighted

broader = that percent weighted by the variable importance in each species’ 90 m model. Variables are defined in Table 1

Variable 90 m 270 m 800 m 4000 m

% species

broader

% weighted

broader

Ppt_wet 22 (0.1–66) 23 (0.1–65) 23 (0.1–69) 25 (0–67) 58 51

Aridity 11 (0.1–60) 12 (0.1–61) 14 (1–60) 17 (1–71) 44 44

T_min 8 (0.2–75) 9 (0.2–71) 6 (0.3–73) 12 (0.2–67) 38 57

GDD5 7 (0–69) 7 (0–71) 8 (0–71) 7 (0–63) 56 59

Ppt_warm 7 (0.4–61) 8 (0.6–58) 6 (0.2–59) 7 (0.3–40) 33 37

T_wet 5 (0–48) 4 (0–44) 5 (0–38) 3 (0–31) 37 44

T_max 6 (0–42) 5 (0–39) 4 (0.1–40) 4 (0.2–34) 38 33

T_dry 2 (0–19) 1 (0–17) 2 (0–18) 2 (0–19) 46 61
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the time, so the trend was not consistent across species

and predictors. Nevertheless, models using coarser-res-

olution climate data did yield predictions of larger,

more generalized habitat areas both for current climate

and future climate scenarios, consistent with expecta-

tions. Due to this generalization across scales, it is not

surprising that the estimated percent change in habitat

area from current to future did not differ significantly

as a function of scale. This suggests that summary pro-

jections of, for example, the number of species expected

to gain or lose climatically suitable habitat under climate-

change scenarios might not differ greatly if they were

based on 4 km vs. much finer scale climate data. How-

ever, these summary projections do not account for scale

effects on the predicted location of stable habitat. The pro-

portion of the species range predicted to be stable, i.e., the

amount of spatial overlap between predicted current and

future climatically suitable habitat, increased with coarser

scale data. On average, 4 km data overestimated stable

habitat by 42% compared with 800 m data.

The more spatially generalized estimates of stable

habitat at coarser scales relative to finer scales, as well

as the lack of spatial congruence between habitat fore-

casted to be stable at coarse vs. fine scale, both have

more serious implications than percent change in area

when SDMs form the basis of conservation decision

making with regard to climate-change adaptation. In

this study, SDMs based on coarser scale data would

yield more optimistic projections than fine-scale predic-

tions about the total amount of habitat likely to be sta-

ble, and therefore likely occupied, especially if these

spatial forecasts of suitable habitat were used to sup-

port models accounting for dispersal (reviewed in

Franklin, 2010), particularly for poorly dispersing spe-

cies (Keith et al., 2008; Regan et al., 2010). At the same

time, coarser scale models underestimate the presence

of locally suitable habitats that could allow species per-

sistence, i.e., without requiring dispersal to areas that

may become climatically suitable in the future.

Another study examining climate-data scale effects

also determined that coarse-scale data predicted persis-

tence of habitat for plant species under warming scenar-

ios where fine-scale models predicted loss (Trivedi et al.,

2008). While they painted an optimistic picture of stable

habitat with their broad brush, in our study coarser-reso-

lution models failed to capture much of the habitat pre-

dicted to be stable under climate-change scenarios at

finer resolutions, assuming that the fine-scale predictions

are accurate (see also Flint & Flint, 2012). These spatial

forecasts of the locations of future suitable habitat are cru-

cial for conservation planning and adaptation policies.

In conclusion, the potential importance of local climate

refugia for species persistence and rapid migration makes

understanding the effect of climate-data spatial resolution

especially critical for predicting the impacts of climate

change on biodiversity in complex terrain. Determining

how analysis scale and downscaling approach affect

projected changes in habitat distributions under climate-

change scenarios is necessary to establish risk-based

conservation priorities and adaptation strategies. We

found only small differences in estimated range extent

based on downscaled climate grids at 800, 270, and 90 m

resolution. However, the actual location of forecasted suit-

able or stable habitat varied considerably as a function of

model resolution, especially comparing 4 km or 800 m

model with 270 or 90 m model. The difference in location

of modeled suitable habitat at 90 m vs. 270 m is minor,

suggesting that, at least based on environmental data and

climate downscalingmethods used here, the answer to the

question posed in the title of this study is that on average

‘270 m is fine enough,’ but results vary widely among spe-

cies. In rugged terrain even finer models (e.g., 10–30 m)

may be needed to represent ecologically significant micro-

climates associatedwith cold air pooling, topographic con-

vergence, and insolation patterns (Dobrowski et al., 2009).

These scale dependencies may also vary according to cli-

mate-change scenario and species range characteristics.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Table S1. Predicted habitat area for 52 species as a function
of climate-data resolution for present climate and four
future climate scenarios for the period 2071–2100. Median
and standard deviation (km2) for areas (Net change is the
ratio of future to current and is unitless). (a) indicates signifi-
cant differences (within rows) at alpha = 0.01 (P < 0.01).
Table S2. AUC [Area under the curve (AUC) of the recei-
ver-operating characteristic (ROC) plot] shown for each Spe-
cies Distribution Model and each climate date resolution.
AUC is a measure of model performance. It is interpreted as
the probability that a random positive instance (species
occurrence) and a random background observation are cor-
rectly discriminated by the model.
Figure S1. Examples of increasing generalization in mar-
ginal response curve shape estimated using MaxEnt from
90 m to 4 km scale are shown here. In the first row, the
response of Ceanothus tomentosus to precipitation in the wet-
test quarter (Bio_16) is strongly unimodal and skewed at 90
m resolution, with a peak of 0.8 at around 200 mm (A). At 4
km resolution (B) the response could be described as piece-
wise linear and unbounded, with a positive response up to
200 mm, but then one that remains flat at higher values. In
the second example, the marginal response of Deinandra con-
jugans to minimum temperature of the coldest period
(Bio_6) shows an optimum of about 0.8 at about 6 °C and is
steeply negative above that at 90 m scale (C), but a lower
peak (0.7) and is more or less flat (constant high probability)
above that at 4 km scale (D). Under a scenario of increasing
winter temperatures, habitat suitability could be predicted
to increase at 4 km scale but not 90 m scale for this species.
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