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Abstract

Wildfires can pose a significant risk to people and property. Billions of dollars are spent investing in fire management actions
in an attempt to reduce the risk of loss. One of the key areas where money is spent is through fuel treatment – either fuel
reduction (prescribed fire) or fuel removal (fuel breaks). Individual treatments can influence fire size and the maximum
distance travelled from the ignition and presumably risk, but few studies have examined the landscape level effectiveness of
these treatments. Here we use a Bayesian Network model to examine the relative influence of the built and natural
environment, weather, fuel and fuel treatments in determining the risk posed from wildfire to the wildland-urban interface.
Fire size and distance travelled was influenced most strongly by weather, with exposure to fires most sensitive to changes in
the built environment and fire parameters. Natural environment variables and fuel load all had minor influences on fire size,
distance travelled and exposure of assets. These results suggest that management of fuels provided minimal reductions in
risk to assets and adequate planning of the changes in the built environment to cope with the expansion of human
populations is going to be vital for managing risk from fire under future climates.
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Introduction

Wildfires can pose a significant risk to people and property [1–

4]. Large losses of property and life have been recorded from

individual fires or fire complexes in fire prone regions throughout

the globe [5–7]. Such events can impact individuals and

communities for many years [8–11]. As a result, fire management

agencies invest significant budgets in reducing the risk of loss from

wildfires, primarily through investment in fuel management and

active fire suppression [12,13].

Fuel management is a commonly used risk management tool in

fire prone landscapes [14,15]. The justification for the approach

derives from the fundamentals of fire behaviour with a reduction

in fuel loads expected to result in a subsequent lowering of the fire

intensity and rate of spread [16–20]. In turn, these changes to fire

behaviour are expected to increase the probability of successfully

containing the fire with active fire suppression [21,22].

Fuel breaks are a commonly applied type of fuel management

treatment in a variety of ecosystems. These are mechanical

reductions or removal of fuel, typically as linear features along

ridgetops, to enable safe access for fire suppression crews to

manage fires [23]. Empirical analysis has found fuel breaks are

more effective when readily accessible and well-maintained and

when used for backfire operations [23,24]. Under these conditions

the intensity and rate of spread are lower and containment of the

fires through active suppression is more likely to be successful

[21,22,24]. Simulation studies have found individual fuel breaks

have the potential to reduce the size and intensity of wildfires

[25,26]. While studies examining the impact of fuel breaks on the

behaviour of individual fires are valuable, to quantify the extent to

which fuel breaks reduce risk to lives and property, we need to

examine the role of fuel breaks at the landscape scale [27].

Although simulation studies have shown management of fuels can

alter fire regimes in forested ecosystems, there is a need to quantify

how fuel breaks, in particular, can reduce the risk of exposure of

assets. Here we examine the performance of fuel breaks in

mitigating risk in Mediterranean shrubland (chaparral) landscapes.

Fuel breaks are the main fuel treatment carried out in the

chaparral shrublands of southern California, with a long history of

extensive deployment [23,24]. Thus case studies of their effective-

ness in mitigating risk can provide valuable insight into mitigation

of risk in a region with some of the highest exposure of fire-prone

urban and peri-urban developments in the world. Case studies in

this context may also be valuable for assessing fuel treatment

options in other fire-prone, temperate environments which share

similar elements of the problem [28].
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Bayesian Networks (BN) provide a suitable methodology for the

analysis of risk management problems [29–31]. They are depicted

as directed acyclic graphs with nodes representing the variables

and arrows representing the directional relationships between

nodes [32]. There is a conditional probability table for each node

that contains the joint probability distributions for the variable

[33]. Root nodes occur at the top of the model and are not

influenced by other variables in the model. These nodes have a

conditional probability table containing a single probability for

each state in that node. Child nodes are variables that are

influenced by one or more variables (parent nodes). These nodes

have a conditional probability table that represents the probability

of a given state in the child node given the state(s) in the parent

node(s). Uncertainty is propagated throughout the model,

providing probability distribution for all output nodes. Results

are likelihoods that form the basis for risk management

calculations [29]. Bayesian Networks have been found to be a

valuable method for examining fire risk management problems at

the landscape scale [31,34].

Here we develop a Bayesian Network model to examine the role

of fuel breaks in reducing the risk of assets being exposed to

wildfire using San Diego county as a case study area. San Diego

county has a history of major fire losses (circa 5000 houses

destroyed between 2000 and the present), which reflects extensive

and rapidly growing developments, exposure to regular episodes of

severe fire weather and terrain and vegetation conducive to the

rapid spread of intense fires [35]. Thus the county comprises

encapsulates key elements and a significant portion of the wildfire

risk problem in southern California. As a case study it therefore

provides the potential for key insights into fire management that

are regionally, nationally and globally significant. The BN model

combines data from a fire simulation model (FARSITE) and

environmental data. We specifically seek to determine the extent

to which risk posed by wildfires to properties at the wildland urban

interface is influenced by the environment (weather, fuel moisture,

natural environment), developmental patterns (built environment)

and fuel management (fuel load, fuel breaks).

Methods

The study area was San Diego County, California, USA, which

supports a population of approximately 3.2 million people in an

area of approximately 11 000 km2 (US Census, http://quickfacts.

census.gov/qfd/states/06/06073.html, Accessed December 2013).

In the county, there is a long and complex wildland urban

interface [36], along which thousands of homes have been

destroyed in major fire events in the last decade [37]. Native

vegetation of the area is dominated by chaparral, coastal sage

scrub, and oak woodland. The county experiences a Mediterra-

nean climate with hot dry summers and winter rainfall with

moderate temperatures. Fires in the county occur most frequently

in summer months, but most area burned occurs in the autumn

when annual fuel moisture is lowest and Santa Ana winds are most

frequent [38]. San Diego County was selected as it is dominated

by highly flammable shrubland vegetation and falls within known

Santa Ana wind corridors, making the region prone to recurrent

large fire events [39,40]. The simulation landscape was defined as

a 60 km660 km area east of San Diego (Figure 1).

A Bayesian Network model was used to examine the relative

influence of weather, the built and natural environment and fuel

breaks on the risk of exposure to wildfire. Here we broadly follow

the methods for developing Bayesian Networks recommended by

Marcot et al. [41] and Chen and Pollino [42]. The primary steps

used were to construct a conceptual model of the problem, develop

influence diagrams to depict the relationships of the conceptual

model and finally populate all the conditional probability tables

within the model.

A basic conceptual model for the study was derived from

previous fire management research [31,34]. This model assumed

an ignition had occurred and predicted the subsequent spread and

potential impact of the wildfire upon property, which was

dependent upon environmental conditions and management

decisions.

Influence diagrams encapsulated the conceptual framework and

the relevant environmental factors (Figure 2). These were devel-

oped for the study area by the authors through a series of

workshops held by the United States Geological Survey (Decem-

ber 2010, September 2011, May 2012) involving twelve research-

ers with expertise in fire management, Bayesian Network analysis

and landscape ecology. Iterations of the influence diagrams were

presented to the group, discussed and then further refined until a

consensus was reached. In the final set of influence diagrams, fire

size and distance travelled were assumed to be influenced by the

key variables considered in the simulation modelling – weather,

fuel moisture, landscape fuel load and the occurrence of fuel

breaks within the National Forest. Elements of the natural

environment at the ignition location, specifically fuel type, fuel

load and elevation, were considered to have an influence on fire

size and distance travelled. The built environment also influences

fire spread and exposure of property. Exposure to fire was taken as

simple function considering the distance the fire could potentially

travel and the distance from the ignition point to property

(Figure 2).

Data for the conditional probability tables in the analysis

(Table 1) were derived from either a simulation study or empirical

data for the study region. We undertook a comprehensive

simulation of fires in the area using the Fire Area Simulator

(FARSITE) using random ignition locations. FARSITE is a two

dimensional spatially explicit model that models fire spread using

Huygens’ principle [43]. The simulations examined all combina-

tions of fire weather (low, high and Santa Ana), live fuel moisture

(LMF 60% and 90%), fuel loading (low and high) and the presence

or absence of maintained fuel breaks. A total of 11,944 fires were

simulated a FARSITE framework. Complete details of the

approach are presented in Table S1 in Material S1. From the

simulation data, we derived values for the nodes fire size and

distance travelled. Weather, fuel moisture, landscape fuel load and

the occurrence of fuel breaks were implemented as decision nodes

to explore the relative influence of each factor. Environmental

variables (i.e. elevation, ignition fuel load, ignition fuel type and

distance to the interface) were derived from GIS data from the

region (www.landfire.gov Accessed October 2012). All nodes and

methods of discretisation are described in more detail in Table 1.

The Bayesian Network model is available from the ABNMS data

repository (www.abnms.org).

Two methods were used to examine the relative influence of

variables. Firstly, the relative influence of each of the modelled

factors was assessed using values of the terminal node – ‘‘exposure

to fire’’. This node reflects the risk of property being exposed to a

wildfire under the given conditions. We considered all 24

combinations of the key predictor variables – weather (3 levels),

fuel moisture (2 levels), landscape fuel load (2 levels) and fuel

breaks (2 levels) (Table 1). Secondly, the sensitivity of nodes was

assessed using the sensitivity to findings function in Netica (http://

www.norsys.com/netica.html, Accessed December 2013). This

function examines the extent to which changes in one variable

affects the variable of interest. We examined the sensitivity of

What Influences the Exposure of Property to Wildfire?
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findings for ‘‘exposure to fire’’ as the terminal node and ‘‘distance

travelled’’.

Results

The size of fires after a 12 hour simulation ranged from 0.1 ha

to 28,480 ha, with a mean of 2896 ha (640 S.E.) and a median

882 ha. The distance travelled ranged from 18 m to 47,300 m

with a mean of 6171 m (657 S.E.). Responses of fire size and

distance travelled to the predictor variables were consistent. Fire

size and distance travelled increased with the severity of fire

weather and the landscape fuel load, and decreased with

increasing fuel moisture. The presence of fuel breaks had little

influence on either individual fire size or distance travelled

(Figure 3).

Risk of exposure to fires was influenced most strongly by

weather (Figure 4). The risk of exposure was .99% for all fuel

Figure 1. Location of the study area, San Diego County, USA.
doi:10.1371/journal.pone.0111414.g001

Figure 2. Influence diagrams for the Bayesian Network Model See Table 1 for node definitions and states.
doi:10.1371/journal.pone.0111414.g002
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scenarios considered under Santa Ana conditions. Under low and

high weather conditions, fuel load and fuel moisture had a strong

influence of risk of exposure, whereby risk was greater when

landscape fuels were high compared to low and when fuel

moisture was 60% compared to 90% (Figure 4). These effects were

lost under Santa Ana conditions, where fuel load and fuel moisture

had very little effect on the risk of exposure. Fuel breaks had very

little influence on the risk of exposure. Risk varied significantly

across elevation with fires starting in low elevation sites having

significantly higher risk than fires starting at higher elevation sites

(Figure 4).

Exposure to fires was most sensitive to changes in the built

environment, as well as fire parameters, i.e. fire size and distance

travelled (Figure 5a). Distance to structures from the ignition had

the strongest influence, followed by the distance travelled by a fire

and the fire size. This is expected as parent nodes are likely to have

the strongest influence on a node. Of the variables a greater

distance from the terminal node, variables depicting the built

environment (housing density and distance to road) were the next

most influential variables, followed by weather. Variables describ-

ing the natural environment had only a modest influence on

exposure to fires, with the fuel variables having no influence

(Figure 5a). Distance travelled by a fire was primarily influenced

by the weather on the day of the fire (Figure 5b). Natural

environment variables and fuel load all had minor influence (,

2.1%), with all built environment variables having low influence

(,1%) (Figure 5b).

Discussion

Consistent with previous research, fire size and distance

travelled is most sensitive to changes in weather [18,44–48] and

the risk of exposure is most strongly influenced by attributes of the

fire (size and distance travelled) and the nature of the built

environment [34,49]. Measured attributes of fuels had only a

minor influence on fire parameters and risk of exposure. Fuel

breaks in the National Forest did not affect fire size, distance

travelled or the risk of exposure at the interface.

Risk of exposure
Weather had the strongest influence on fire size and distance

travelled (Figure 5b) and indirectly, the risk of exposure. It has

been well documented that fire weather strongly influences fire

size, the rate of spread, spotting distance, fire intensity and severity

[16,18,40,50–52]. As a result, wildfires burning under extreme

conditions account for the majority of area burnt for many regions

[44,53–55]. Furthermore, it is under extreme fire weather

conditions wildfires pose the greatest threat to people and property

[50,56–59].

Exposure was also influenced by the built environment, namely

distance to road and housing density (Figure 5). Higher densities of

properties occur at lower elevations (less than 300 m) and these

have a higher risk of exposure compared with higher elevation

sites independent of weather (Figure 4). Fires starting close to the

interface are more likely to impact upon assets under any weather

conditions [60,61], whereas fires starting considerable distances

from property are only likely to impact on property under extreme

weather conditions conducive to fire spread [34,57]. These results

suggest that adequate planning of the changes in the built

environment to cope with the expansion of human populations is

going to be important for managing risk from fire [49,62,63]. We

do note that the model only considers exposure to fire and we have

not considered the size of the fire or the extent of the interface

exposed to the fire. Fires that start away from populations will be

significantly larger when they do impact on the interface

compared with those that start nearby [60]. Larger fires would

Table 1. Nodes, definitions and states used in the Bayesian Network model.

Node Description Levels

Distance Travelled (O) The maximum distance the fire travelled. 0 to 0.5 km; 0.5 to 1.5 km; 1.5 to 4 km; 4 to 10 km; 10 to 15 km; .15 km

Distance to the coast (GIS) Distance from the ignition point to the coast. 0 to 10 km; 10 to 25 km; 25 to 42 km; 42 to 68 km; 68 to 80 km; .

80 km

Distance to road (GIS) The distance from the ignition point
to the nearest mapped road.

0 to 50 m; 50 to 100 m; 100 to 500 m; 500 to 1000 m; 1000 to 2000 m;
.2000 m

Distance to structure (GIS) The distance from the ignition point
to the nearest mapped house.

0 to 50 m; 50 to 100 m; 100 to 500 m; 500 to 1000 m; 1000 to 2000 m;
.2000 m

Elevation (GIS) Elevation of the ignition point 0 to 300 m; 300 to 600 m; 6000 to 1000 m; 1000 to 4000 m; .4000 m

Exposure (C) Are houses exposed by the fire Yes; No

Fire size (O) The final size of the simulated fire 0 to 20 ha: 20 to 150 ha: 150 to 1000 ha: 1000 to 5000 ha: 5000 to
10000 ha: .10000 ha

Fuel breaks (S) Whether fuel breaks are present Yes; No

Fuel load (S) Landscape fuel load High (2001); Low (2008)

Fuel moisture(S) Live fuel moisture level at the start
of the simulation

60%; 90%

Fuel type at ignition (GIS) Broad classification of the type of
vegetation at the point of ignition.

Grass; Shrub; Tree

Housing density (GIS) Number of houses per hectare 0 to 26; 26 to 33.5; 33.5 to 117; 117 to 205; 205 to 300; .300

Slope (GIS) Slope under the ignition point 0 degrees; 0 to 5 degrees; 5 to 15 degrees; 15 to 30 degrees; .30
degrees

Weather (S) Predominant conditions during
the simulated fire

Low; High; Santa Ana

(C) = calculated variable; (GIS) = GIS derived variable; (O) = output of the simulation model; (S) = variable set in the simulation model.
doi:10.1371/journal.pone.0111414.t001
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be expected to impact on a greater number of assets than smaller

fires and these relationships require further investigation.

Of the factors relating to fuels, landscape fuel load had the

strongest influence on fire size, distance travelled and risk of

exposure (Figure 3; Figure 4). However, our model is more

sensitive to the effects of weather and the built environment

(Figure 5). Price et al. [64] found no effect of antecedent area

burnt on the annual area burnt by wildfire in southern California

coastal systems. The authors argue that the low effect of past fire is

related to the low level of wildfire in the system (,2% per annum)

and the rapid development of fuels (1–2 years). A large proportion

of the study area (,22%) burnt in wildfires during 2007 and was

consequently in the early stage of fuel development (i.e. 1 year old)

in the 2008 fuel layer, which may explain the strong influence of

fuel load under low and high fire weather. However, in San Diego

County, the majority of annual area burnt occurs under extreme

Santa Ana fire weather [55] where our model found no effect of

fuel load. These results support the finding of Price et al. [64] that

landscape fuel treatments in these systems are unlikely to reduce

the risk of fire to assets. (Figure 3; Figure 4). Scenarios with 90%

fuel moisture had significantly lower risk than those with 60%

under low and high conditions, but not under Santa Ana

(Figure 4). Live fuel moisture is related to fire activity in southern

California, with large fires generally being associated with low

levels (,60–80%) [65,66]. Early in the fire season live fuel

moisture is generally greater than 90% (Keeley et al. 2009), the

resulting area burnt in southern California typically is relatively

small [65,66]. Our selection of 60% and 90% may not have truly

captured the variable effect of live fuel moisture, particularly when

these values exceed 100% and fire activity is expected to be low.

However, the greatest risk to assets comes during Santa Ana

weather conditions where there is no distinguishable effect of live

fuel moisture, providing further support for our existing results.

Regardless, it is typically lowest at the end of summer drought

when Santa Ana winds and hence large fires are most likely [67].

Fuel breaks were ineffective at altering risk of exposure of

property under any weather scenario in our study. Here we

modelled fires assuming that all mapped fuel breaks in San Diego

County were maintained (see Material S1; Figure 1), which

exceeds current practice. Fuel breaks have been found to affect

individual fire size and distance travelled [25,26]. The network of

fuel breaks in San Diego County is highly clustered (Figure 1)

presumably to protect particular assets from future wildfires,

although fuel breaks continue to be constructed. Clustering of the

fuel breaks will result in low encounter rates with wildfires that will

result in a low efficacy of this management technique [24] when

considering the landscape level risk. Here we assumed a random

ignition model, however ignitions do not occur randomly across

Figure 3. Relationships from the FARSITE simulation data between weather and fire size with fuel moisture of a) 60% and b) 90%,
and distance travelled with fuel moisture of c) 60% and d) 90%. Open symbols are for simulations with no fuel breaks, closed symbols for
simulations with fuel breaks. Circles represent a high landscape fuel load scenario and triangles represent a low landscape fuel load scenario. NB 95%
confidence intervals were too small to depict in the graphics.
doi:10.1371/journal.pone.0111414.g003
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landscapes [60,68–70] and tend to occur close to roads and

development. This is important with regards to the result that fires

that start closer to homes are most likely to reach those homes.

Simulations have revealed that fire size and burn probability are

sensitive to the use of random against non-random ignition

locations, though these biases are minimised under extreme

weather conditions [71] when the greatest risk of exposure occurs

(Figure 4).

The effectiveness of fuel breaks is contingent on suppression

resources and access [24]. In our study, the fuel breaks were

constructed in FARSITE in a manner that simulated suppression

along the fuel breaks. Fuel breaks tend to be constructed to allow

for control of the fire flanks and not the head fire, i.e. the point of

the greatest forward rate of spread. As a result, fuel breaks are

unlikely to affect the distance travelled by a fire and have negligible

impacts on total fire size. Our model did not model the interaction

of suppression through direct attack of the fire front or indirect

attack from other breaks in the landscape, e.g. roads and rivers.

Inclusion of the suppression at these points may have altered the

efficacy of fuel breaks when estimating risk. Similarly, we did not

consider the impact on fires of igniting backburns from fuel breaks.

However, as the severity of the fire weather increases the

effectiveness of suppression actions are severely diminished

[22,48,72]. Therefore, we would only consider fuel breaks in

conjunction with suppression as having potential to further reduce

risk under low fire weather and not under moderate fire weather

or Santa Ana conditions [24,39].

Fire management
Management agencies seek to reduce risk to assets acknowledg-

ing that there are no practical means to remove the risk. Weather

is the primary determinate of risk to assets from fire [34,55,57].

Figure 4. Risk of exposure for the 24 scenarios modelled for a) fires igniting at elevations of 300 to 600 m; b) fires igniting at
elevations of 1000 to 4000 m; c) all locations across the landscape. Open symbols = fuel break scenarios; closed symbols = no fuel breaks;
Grey symbols = fuel moisture of 60%; Black symbols = fuel moisture of 90%; Circles = high landscape fuel loads; Triangle = low landscape fuel loads.
doi:10.1371/journal.pone.0111414.g004
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While management actions can be effective under relatively

benign fire weather, understanding the effectiveness of manage-

ment under extreme fire weather is fundamental to determining

the extent to which management can reduce risk to people and

property [48]. In our model, we considered the role of fuel

treatments both fuel breaks for suppression and fuel treatments

through examining the role of fuel loads. Neither of these was

effective under extreme fire weather despite our model considering

extreme levels of fuel treatment (.20% in 1 year old fuel) and fuel

breaks (all mapped breaks in the county).

A range of other fire management approaches are available that

were not tested here. Three broad management areas have the

potential to significantly reduce risk to assets. Firstly, ignition

management to reduce the occurrence of ignitions and subsequent

fires will reduce the risk to assets [44]. Included in ignition

management would be rapid response or initial attack [47,73],

whereby resources are used to aggressively attempt to suppress

fires before they become established fires. Secondly, improved

urban planning policies to better develop the built environment to

reduce the extent of the exposure [49,62,74]. This would include

building in low risk areas outside Santa Ana wind corridors [35]

and incorporating adequate offsets between vegetation and

structures [74,75]. In southern California, the best urban planning

practices would be to focus on infill-type development, as low to

intermediate housing density, and isolated clusters of development

are the strongest risk factors for a house being destroyed in a fire

[63]. Finally, reduce the vulnerability of residents and properties at

the urban interface. Residents can be educated to reduce the

vulnerability of their property through adequate preparation

[76,77]. Furthermore, properties can be built or retrofitted to

appropriate construction standards to be more resilient to the

impact of fire [78,79]. While each of these is likely to reduce risk,

only through an expanded analysis of these approaches across all

weather scenarios will it be possible to identify an optimal

management strategy.

Conclusion

Weather determines the risk of exposure for assets in the

landscape. Under extreme weather, where the risk of fire is

Figure 5. Sensitivity to findings for nodes a) Exposure to fire and b) Distance travelled. White bars = fire variables, dark grey bars = built
environment variables; light grey bars = natural environment variables; Black bars = simulation model variables. D2S = distance to structure;
DistTrav = distance travelled by the fire; HouseDens = housing density; D2Rd = Distance to road; D2C = distance to the coast; IgFuelType = fuel type at
the point of ignition; IgFuels = fuel load at the point of ignition; FuelBreaks = presence of fuel breaks.
doi:10.1371/journal.pone.0111414.g005
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greatest, landscape fuel treatments are unlikely to have a

significant influence on risk. These results suggest that managing

the occurrence of fire and the spatial distribution of the built

environment across the landscape is likely to be the best way to

alter the risk profile. Further research is needed to examine the

cost trade-offs of each of these approaches.

Supporting Information

Material S1 Supplementary text outlines the modelling process

in farsite. Table S1, Fuel moisture conditions used in the

simulations. Dead fuel moisture values are from Scott and Burgin

(2005). See text for description of LFM categories.
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