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Executive Summary

We used historical fire occurrence data to evaluate the relative probability of wildfire ignition
and occurrence of large fires across Santa Barbara county, California, under both historical and
projected future conditions. The resulting probability layers are intended to support a Regional
Priority Plan to reduce wildfire risk and improve forest and habitat health.

We statistically compared locations of fire ignitions and large fires (> 40-ha) to environmental
variables likely to influence where fires start and how they spread (vegetation, terrain, land-use,
and climate variables). We used the most predictive variables to create multivariate models of
fire ignition risk and the risk of large fire  using the MaxEnt program. In addition to estimating
risk now using the baseline conditions (1980-2010) we also estimated these risks into the future
(2020-2050) using two available general circulation models (GCM) -  CNRM-CM5 (“cool/wet”
conditions) and MIROC5 (“hot/dry” conditions), and we used the RCP 8.5 “business as usual”
emissions scenario for both.  To consider fire-climate-vegetation interactions under future
climates, simulated vegetation predictors derived from a process-based dynamic vegetation
model called MC2 were included. We also mapped the percent change of fire ignition and large
fire occurrence risk for any given location from current to future conditions.

We tested the models by seeing how well they predicted some past fire ignitions and large fires
that had been randomly set aside from those fires used to train the models. Average test AUC
values (a measure of model discrimination) were 0.72 for fire ignition and 0.67 for large fire
occurrence, suggesting the models performed satisfactorly with moderate predictive power.

Fire Ignition Risks - Baseline

Distance to development and distance to roads were the most important contributors to
ignition risk.  Minimum temperature and annual precipitation were of moderate importance.
Fire ignition risk varies greatly across Santa Barbara County, but is concentrated on flat slopes
and in lower elevation areas, such as Nipomo Valley in the northwest, Santa Ynez Valley in the
central part of the county, Cuyama Valley in the north, and Ojai Valley in the southeastern part
of the study region. There is also a large zone at higher risk on the coast, in the greater Santa
Barbara area.

Fire Ignition Risks - Futures

Under CNRM-CM5 (cool/wet) future projections, fire ignition risk patterns are similar to the
baseline, with the following differences. Percent change from baseline was highest in
mountainous areas (San Rafael and Santa Ynez), southwest of Lompoc, and in the Nipomo
valley. Large decreases in fire ignition risk are projected under CNRM-CM5 in north-central and
northeastern portions of the region - Caliente Range, Sierra Madre.  Across the entire
landscape, there was an average increase in projected fire ignition risk of 7%.
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Under MIROC5 (hot/dry) conditions, there was a projected contraction in areas of high fire
ignition risk over most of the region, most notably in the greater Santa Barbara region, Santa
Maria Valley, and Cuyama Valley. The very limited areas with increased projected fire ignition
risk under MIROC5 are concentrated in inland areas at higher elevations around Matilija
Wilderness, Pine Mountain, and Topatopa Mountains following patterns in increased summer
precipitation and dead wood carbon. Across the entire landscape, there is an average decrease
in projected fire ignition risk of 18% across the landscape.

Large Scale Fire occurrence - Baseline

Topographic heterogeneity, higher wind speeds, higher minimum temperature, and higher
annual precipitation were the most important contributors to the occurrence of large scale fires.
Areas at greater risk for large fires in the region are at predominantly at higher elevations with
steep slopes, along the Irish Hills in the west, Santa Ynez-Sulphur Mountains along the coast,
Sierra Madre Mountains to the north, San Rafael Range in the central part of the region, and
Topatopa Mountains to the east.

Large Scale Fire occurrence - Future

Under both CNRM-CM5 (cool/wet) and MIROC5 (hot/dry) projections, large fire risks are slightly
greater than under the baseline, with the following differences. Minimum temperature and
dead wood carbon, moderately important predictors in the large fire risk model, show similar
patterns of increase relative to baseline under both GCMs. Percent change in projected large
fire risk under CNRM-CM5 is highest in the northeastern part of the region around San Emigdio
Mesa and San Guillermo Mountain, around the Topatopa Mountains in the east, and also along
the Sierra Madre and San Rafael Mountains. Across the entire landscape, there is an average
increase in projected large fire risk of 9% under CNRM-CM5. Highest projected increases in large
fire risk are in small patches around San Emigdio Mesa and San Guillermo Mountain under
MIROC5, with an average increase of 8% across the landscape.

We emphasize that fire risk modeling is inherently uncertain given the stochastic nature of fire
and how it is affected by factors not available for statistical analyses, and that therefore these
results must be interpreted with caution.
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Introduction

Santa Barbara County is ravaged by fires every year, this has only gotten worse as the climate
changes. Policy makers and land managers would like to have a better idea on which areas
within the county are more vulnerable to fires in the future, to be able to take necessary
preventative actions. There are few risk models that are able to guide such planning and none
based on local conditions and with high data resolution. Two key indicators of vulnerability to
fires are the risk of large fire occurrences and the risk of ignitions. In this project we model
these two indicators of vulnerability to fires across the county using the best available data and
modelling tools we have.

The objective of this project was to use fire occurrence and perimeter data to evaluate the
relative probability of wildfire ignition and occurrence of large fires across Santa Barbara county,
California, under historical and projected future conditions. The resulting probability layers are
intended to support a Regional Priority Plan to reduce wildfire risk and improve forest and
habitat health.

The results should be interpreted with caution. Modeling fire risk is an uncertain task given the
stochastic nature of fire and how its effects are influenced by ignition timing and location,
terrain, fuel conditions, weather conditions, and firefighter tactics during a fire. Our intent was
to map the potential for large fires based on available, landscape-scale, and longer-term data,
not to predict real-time fire behavior nor to make precise predictions about future fires.

Methods

We used an approach similar to Syphard et al. (2018) to develop statistical correlative models
relating fire occurrence patterns over average conditions in the past and map projected future
fire occurrence by combining Maxent (‘presence-only’ software for modeling distributions;
Phillips et al. 2006) with outputs from a dynamic vegetation model and downscaled climate
model.  MaxEnt compares occurrence points with a sample of background points to create a
prediction of relative risk. MaxEnt has been successfully used in a range of wildfire analyses
(Bar-Massada et al. 2012, Parisien et al. 2016, Davis et al. 2017, Syphard et al. 2018, Tracy et al.
2018, Syphard et al. 2019).

We statistically compared locations of fire ignitions and large fires (> 40-ha) to environmental
variables likely to influence where fires start and how they spread (vegetation, terrain, land-use,
and climate variables). We used the predictive variables to create separate multivariate models
of fire ignition and large fire occurrence (i.e., likelihood or risk of a pixel burning as a fire
spreads) risk using the MaxEnt program, training and testing models with fire ignition points
and randomly distributed points within large fire perimeters. We considered 18 variables and
settled on the most parsimonious set of 11 variables for the fire ignition analysis and 9 variables
for the large fire occurrence analysis.
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We also wanted to estimate these risks in the future, and identify where the risks increase or
decrease. To consider fire-climate-vegetation interactions and feedbacks under future climates,
simulated vegetation predictors derived from a process-based dynamic vegetation model (MC2;
Bachelet et al. 2015) were used in place of static vegetation maps (Syphard et al. 2018). Our
models were calibrated using baseline conditions (1980-2010) and projected to future
conditions (2020-2050) under two general circulation models for which both simulated
vegetation and downscaled climate data were available. In addition to these 6 model outputs,
we averaged the future outputs for each correlative model.  Finally, we mapped the percent
change of fire ignition and large fire occurrence risk risk for any given location from current to
future conditions.

Study Area

Our area of interest includes Santa Barbara County, California as well as portions of adjacent San
Luis Obispo, Ventura, and Kern Counties and encompasses most of the Los Padres National
Forest (Figure 1).

Figure 1. Study area.
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Fire Data
We integrated multiple datasets to capture fire activity patterns over the last 40 years, including
the 30 years covered by the baseline climate and simulated vegetation data (1980-2010) and
extending through 2019 for data on fire occurrence.

For our fire ignition risk model, we used ignition points from the National Interagency Fire
Program Analysis Fire-Occurrence Database1 within the study area, for the period 1992-2015.
We augmented this database with other sources covering federal land to capture ignition points
from 1980-1991 and 2016-2019: Federal Wildland Fire Occurrence Data2 were available for
1980-1991 and 2016, while FIRESTAT Fire Occurrence – Yearly Update3 covered 2017-2019.
Ignition points from these 3 datasets within our area of interest totaled 2302 points, which we
thinned to 500m minimum nearest neighbor distance (based on testing of best distance in the
northern Sierra Nevada - Southern Cascades; Syphard et al. 2018) to increase spatial
independence and reduce spatial autocorrelation and model performance inflation (Veloz 2009,
Boria et al. 2014). This left 1353 points, which we divided into model training points (80%, n =
1081) and evaluation points (20%, n = 272; Figure 2).

3 https://data.fs.usda.gov/geodata/edw/datasets.php

2 https://data-usfs.hub.arcgis.com/datasets/national-usfs-fire-occurrence-point-feature-layer

1 FPA-FOD, https://www.fs.usda.gov/rds/archive/Catalog/RDS-2013-0009.4/
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Figure 2. Fire ignition sample points from 1980-2019 used to train and test fire ignition model
(also available in an interactive map).

For our large fire occurrence model, we used fire perimeter data for 201 large (> 40-ha) fires
from the State of California Fire and Resource Assessment Program (FRAP) fire history
database4, which covered our entire time period of interest. We generated a random sample of
points within fire perimeters using the method developed by Davis et al. (2017): the number of
random points generated within each fire perimeter was equal to the square root of the area
within the perimeter divided by 40. As with the fire ignition point data, we also forced a
minimum distance of 500 m between the random points. This process resulted in establishing
840 total sample points within large fire perimeters. We reserved 20% of those points for model
evaluation, leaving a total of 669 points for model training (Figure 3).

4 https://frap.fire.ca.gov/frap-projects/fire-perimeters/
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Figure 3. Sample points within large fires from 1980-2019 used to train and test large fire
occurrence model (also available in an interactive map).

Environmental Predictor Data

We assembled datasets of 18 potential predictor variables at 270-m resolution characterizing
ignition sources (because a fire must occur before it can develop into a large burn) and direct
and indirect drivers of fire, such as climate, topography, land use, and vegetation (Table 1). This
resolution was selected to match that of our downscaled climate data and as a compromise
between that of the vegetation (800-m) and topographic predictors (30-m).

Several variables were tested to capture ignition susceptibility, both anthropogenic and natural
(lightning). Anthropogenic factors also influence the likelihood of a fire growing and developing
into a large fire, because fires closer to human population centers and roads are more likely to
be detected and more accessible for rapid suppression and control. We therefore tested
proximity to roads and proximity to development, which all have been found to be associated
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with human-caused fire ignitions and fire occurrence patterns (Parisien et al. 2012, Syphard and
Keeley, 2015, Mann et al. 2016, Syphard et al. 2018, Syphard et al. 2019).

Table 1. Potential predictor variables considered for inclusion in fire ignition and large fire

occurrence models.

Type Predictor Time Period Source

Climate Seasonality 1980-2010 CA BCM

Climate Minimum Temperature 1980-2010 CA BCM

Climate Mean Annual Precipitation 1980-2010 CA BCM

Climate Mean Summer Precipitation 1980-2010 CA BCM

Climate Climatic Water Deficit 1980-2010 CA BCM

Climate Wind Speed, Average of 10 strongest Santa Ana
Days

2004-2013 David Pierce,
Scripps

Land Use Distance to Roads (All) 2015 TIGER Roads

Land Use Distance to Primary/Secondary Roads 2015 TIGER Roads

Land Use Distance to Development 2016 NLCD Land Cover

Topography Slope  LANDFIRE

Topography Solar Insolation Index ( 2 –
(sin((slope/90)180))*(cos(22 – aspect) + 1)),
Gustafson et al. 2003

 CBI/LANDFIRE

Topography Southwestness (transformed slope aspect
(cos(aspect-255)), Franklin 2003

 CBI/LANDFIRE

Topography Topographic Heterogeneity (standard deviation
elevation calculated for center cell and three cell
(90m) radius immediately surrounding)

 NatureServe

Topography Topographic Wetness Index (function of slope and
upstream catchment area, calculated with SAGA
GIS module)

 CBI/LANDFIRE

Topography Topographic Position CBI/LANDFIRE

Vegetation
(simulated)

Dead Wood Carbon 1980-2010 CBI/MC2

Vegetation
(simulated)

Forest Carbon 1980-2010 CBI/MC2

Vegetation
(simulated)

Standing Dead Grass Carbon 1980-2010 CBI/MC2

While spatial data for lightning strikes are available, they are too coarse in resolution to be
useful in this application. Lightning-ignited fires are correlated with terrain complexity (McRae
1992, Vazquez and Moreno 1998, Kilinc and Beringer 2007) and fuel moisture (Podur et al.
2003; Wotton and Martell 2005), so we used terrain variables, such as topographic
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heterogeneity and slope, and fuel moisture variables, such as solar insolation index and
topographic wetness index (a proxy for soil moisture) as potential lightning strike predictors.

Climate and weather are regarded as controlling factors of fire occurrence, size, and severity
(Westerling et al. 2006, Littell et al. 2009, Dennison et al. 2014, Harvey et al. 2016). Such factors
influence whether an ignition may develop into a large fire via effects on fuel moisture,
structure, and abundance, as well as their real-time effects on fire behavior (e.g., due to wind).
We therefore tested several temperature and precipitation variables, climatic water deficit
(considered a proxy for fuel condition and moisture content), and wind speed for their
influences on fire size (Table 1).

Following Parisien et al. (2012), Davis et al. (2017), Tracy et al. (2018), and Syphard et al. (2018
and 2019), we used long-term climate normals as references of relative conditions likely at each
location. Climate normals represent the typical state based on averaged conditions from an area
over decades of time (Davis et al. 2017). The use of long-term climate normals thus allows for
projecting these models forward under different climate Coupled Model Intercomparison
Project phase 5 (CMIP5) models, because downscaled projections are available as 30-year
averages (CA-BCM 2014, http://climate.calcommons.org/dataset/2014-CA-BCM). Although
finer-scale, real-time weather conditions during a fire would better predict actual fire effects,
such data are difficult to assemble, and the scope of this project was to predict broad, general
patterns to inform management decisions (e.g., forest restoration treatments), not to predict
behavior of individual fires.  We used the most recent 30-year time period (1980-2010) for
which climate data are available as our baseline, and the immediate near term future
(2020-2050) for projections. While climate projections for several CMIP-5 General Circulation
Models are available from CA-BCM 2014, we were limited to those for which we also had
outputs from the dynamic vegetation model. The two available, CNRM-CM5 (“cool/wet”
conditions) and MIROC5 (“hot/dry” conditions), are GCMs recommended as priorities for
research in California due to their range of relevant possible futures here (Kravitz 2017). We
used the RCP 8.5 “business as usual” emissions scenario for both. We also tested a separate
wind dataset, the average wind speed during the 10 strongest Santa Ana days, which was
available for 2004-2013 only.

Vegetation is the fuel required for a wildfire to ignite and spread. Incorporating vegetation
structure into a long-term fire model is difficult due to its highly dynamic nature relative to
available vegetation data sets. We used in-house available simulated vegetation predictors
derived from MC2 (Bachelet et al. 2015), a dynamic global vegetation model which simulates
potential vegetation, carbon fluxes and pools, and wildfire, in place of static vegetation maps.
MC2 was run at 800-m resolution under the fire suppression scenario (for more MC2 details,
please see Syphard et al. 2018). We tested three MC2 simulated vegetation outputs as
predictors: dead wood carbon, forest carbon, and standing dead grass carbon (Table 1).

Terrain is known to have a direct influence on fire behavior and to indirectly influence fuel
flammability (Syphard et al. 2019). We therefore tested several terrain variables relating to
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topographic complexity, aspect, and exposure, including slope, solar insolation index,
southwestness index, topographic wetness index (a proxy for soil moisture), and topographic
heterogeneity (Table 1).

Modeling Process

Our modeling process consisted of 3 main steps: (1) variable selection (testing predictors
independently and evaluating predictor collinearity), (2) multivariate model creation and
variable pruning to create a parsimonious predictive model, and (3) model tuning to control for
overfitting. Our models were run in MaxEnt using the default parameters, including model
clamping, with the following exceptions: linear, quadratic, and product feature types only, and
10-fold cross-validated replication. Linear, quadratic, and product feature types are preferred to
ensure smoother response curves (Santos et al. 2017) and because responses to ecological
gradients are frequently nonlinear and interactions among predictors are common. Clamping
restricts MaxEnt model extrapolations according to the limits of predictor variables used to train
the model and is important when models are projected onto future conditions or new
geographic areas.

Before using all candidate predictors in a full multivariate model, we conducted a correlation
analysis on the predictors using ENMTools (version 1.4.4, Warren et al. 2010). To create more
parsimonious and interpretable results (Merow et al. 2013), we excluded correlated variables
(|r| > 0.7) by selecting the one with the highest univariate 10-fold cross-validated mean AUC
(Area Under the Receiver Operating Characteristic (ROC) curve, a threshold-independent
assessment of model discriminatory ability; Fielding and Bell 1997). Remaining predictors were
carried forward to a full model.

We pruned the resulting full (multivariate) models in an iterative, stepwise process to increase
model parsimony by removing the variable contributing the least information to model fit
(highest mean training gain without the variable) to decrease model complexity and increase
performance (Warren et al. 2014, Yiwen et al. 2016). The model was run again with the
remaining predictors. This was repeated until only one variable remained. From the resulting
model set, we selected the model with the fewest predictors having a mean training gain not
significantly different from the full model. Significance was defined as lack of overlap of 95%
confidence intervals for training gain means (calculated in R version 3.6.2; R Core Team 2013).
While selected models may include predictors that seemingly have low importance, dropping
these predictors results in a statistically significant decrease in model performance.

To prevent model overfitting and reduce complexity, we next tuned our selected model by
varying MaxEnt’s regularization multiplier parameter to constrain model complexity (Anderson
and Gonzalez 2011, Merow et al. 2013, Radosavljevic and Anderson 2014, Warren et al. 2014).
We varied the parameter from 0 to 5 in increments of 0.5 (default = 1), and used the ENMTools
‘Model Selection’ function to calculate AICc (Akaike information criterion corrected for small
sample sizes) for each (Warren and Seifert 2011). For this analysis, MaxEnt was run with the
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variables from the selected pruned model, but using the ‘raw’ output and no replicates
(required for model selection with ENMTools). We selected as the best model the one with the
lowest AICc. AICc provides a quantitative measure balancing model complexity and
goodness-of-fit without requiring a large independent evaluation dataset (Galante et al. 2018).
The model with the lowest AICc is regarded as the best model tested, but all models with AICc
values within 2 AICc units (dAICc) are considered to be supported and may be averaged using
AICc weights. Rather than averaging models that vary only in terms of their regularization
parameter if dAICc < 2, we instead opted for parsimony by simply selecting the regularization
parameter with the minimum AICc.

We then ran MaxEnt with the logistic output option and 10-fold cross validation with the
selected regularization parameters to get final output grids using our multivariate tuned
models.

Model Evaluation

We evaluated the performance of our baseline models using both threshold-dependent and
threshold-independent methods with fire data points reserved for testing along with an equal
number of random ‘pseudo-absence’ points. For threshold-dependent, we used the maximum
training sum of sensitivity and specificity (MAXSS), a model-specific threshold shown to
optimize discrimination between presence and absence (Liu et al. 2013).

We used the MAXSS thresholds provided by MaxEnt to reclassify our continuous model outputs
into binary ‘high risk’ (>MAXSS) and ‘low risk’ (< MAXSS) grids. These were intersected with the
reserved test and pseudo-absence points to calculate model sensitivity (True Positive /(True
Positive + False Negative)), specificity (True Negative /(False Positive + True Negative)), precision
(True Positive/(True Positive + False Positive), and accuracy ((True Positive + True Negative) /
(Positive  + Negative)).

Mean 10% test omission rates and difference between testing and training AUC values were
examined to evaluate potential model overfitting. We also report test AUC values.

Model Projections

We ran MaxEnt a final time, using the projected future climate and simulated vegetation
predictors in place of the baseline versions. We calculated percent change from baseline for
each model and GCM.

Results

These results represent outputs from statistical models based on available landscape-scale GIS
variables that cannot account for real-time fire conditions. They describe broad geographic
patterns in landscape fire risk across Santa Barbara County. All model outputs should be
considered hypotheses to be refined with additional information.
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Fire Ignition Model

The anthropogenic factors tested, distance to development and distance to roads, are the most
important predictors in the fire ignition model. Minimum temperature and annual precipitation
also have moderate importance (Table 2). Fire ignition risk is highest both close to and far from
roads and development, and lowest at moderate distances.

Fire ignition risk varies greatly across Santa Barbara County region, but is concentrated on flat
slopes and in lower elevation areas, such as Nipomo Valley in the northwest, Santa Ynez Valley
in the central part of the county, Cuyama Valley in the north, and Ojai Valley in the southeastern
part of the study region (Figure 4). There is also a large zone at higher risk on the coast, in the
greater Santa Barbara area.

Table 2. Predictor importance determined by MaxEnt for fire ignition and large fire occurrence
risk models. NA indicates the predictor was not included.

Predictor Fire Ignition

Large Fire

Occurrence

Distance to Development 32.8 5.2

Distance to Roads (All) 22.5 NA

Minimum Temperature 12.5 17.3

Mean Annual Precipitation 10.1 12.7

Dead Wood Carbon 8.1 6.6

Mean Summer Precipitation 7.5 NA

Wind Speed, Average of 10 strongest Santa Ana Days 2.6 18.9

Topographic Wetness Index 1.8 NA

Slope 0.9 NA

Climatic Water Deficit 0.9 NA

Topographic Position 0.2 6.5

Topographic Heterogeneity NA 22.8

Distance to Primary/Secondary Roads NA 8.2

Southwestness NA 1.8
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Under CNRM-CM5, projected fire ignition risk patterns are similar to the baseline but the high
risk footprint expands out along edges (Figure 5). Percent change from baseline is highest along
mountainous areas (San Rafael and Santa Ynez), southwest of Lompoc, and in the Nipomo
valley. Large decreases in fire ignition risk are projected under CNRM-CM5 in north-central and
northeastern portions of the region (Caliente Range, Sierra Madre; Figure 6).  Across the entire
landscape, there is an average increase in projected fire ignition risk of 7%.

Under MIROC5, there is a projected contraction in areas of high fire ignition risk over most of
the region, most notably in the greater Santa Barbara region, Santa Maria Valley, and Cuyama
Valley (Figure 5). The very limited areas with increased projected fire ignition risk under MIROC5
are concentrated in inland areas at higher elevations, around Matilija Wilderness, Pine
Mountain, and Topatopa Mountains (Figure 6), following patterns in increased summer
precipitation and dead wood carbon. Across the entire landscape, there is an average decrease
in projected fire ignition risk of 18% across landscape. Syphard et al. (2018) also noted higher
projected mid-century fire ignition probabilities under CNRM relative to MIROC in Butte and
Plumas counties.
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Figure 4. Modeled baseline fire ignition (top) and large fire occurrence (bottom) risk (also
available in an interactive map).

Figure 5. Projected fire ignition risk using CNRM-CM5 (top) and MIROC5 (bottom; also available
in an interactive map).
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Figure 6. Projected percent change in fire ignition risk from baseline using CNRM-CM5 (top) and
MIROC5 (bottom; also available in an interactive map).

Large Fire Occurrence Model

Climate and topographic predictors most strongly influenced the large fire occurrence model.
Topographic heterogeneity, wind speed, minimum temperature, and annual precipitation were
the most important variables (Table 2). Increased risk of large fires is associated with higher
minimum temperature, higher annual precipitation, greater topographic complexity, and higher
wind speeds.

Areas at greater risk for large fires in the region are at predominantly at higher elevations with
steep slopes, along the Irish Hills in the west, Santa Ynez-Sulphur Mountains along the coast,
Sierra Madre Mountains to the north, San Rafael Range in the central part of the region, and
Topatopa Mountains to the east (Figure 4).
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Under CNRM-CM5 and MIROC5, projected large fire occurrence risk patterns are similar to the
baseline with the high risk footprint expanded along its margins (Figure 7). Minimum
temperature and dead wood carbon, moderately important predictors in the large fire
occurrence  risk model, show similar patterns of increase relative to baseline under both GCMs.
Percent change in projected large fire risk under CNRM-CM5 is highest in the northeastern part
of the region around San Emigdio Mesa and San Guillermo Mountain, around the Topatopa
Mountains in the east, and also along the Sierra Madre and San Rafael Mountains (Figure 8).
There are little to no areas of projected decreasing large fire risk. Across the entire landscape,
there is an average increase in projected large fire risk of 9% under CNRM-CM5. Highest
projected increases in large fire risk are in small patches around San Emigdio Mesa and San
Guillermo Mountain under MIROC5 (Figure 8), with an average increase of 8% across the
landscape.

Figure 7. Projected large fire occurrence risk using CNRM-CM5 (top) and MIROC5 (bottom; also
available in an interactive map).
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Model Evaluation

The fire ignition and large fire occurrence risk models had similarly satisfactory performance,
with average test AUC values (a measure of model discrimination) ranging from 0.72 for fire
ignition to 0.67 for large fire occurrence (Table 3).  Mean 10% test omission rates ranged from
0.10 to 0.11 and mean testing and training AUC values were very close for both models,
suggesting neither suffered from overfitting.

Figure 8. Projected percent change in large fire occurrence risk from baseline using CNRM-CM5
(top) and MIROC5 (bottom; also available in an interactive map).

Model sensitivity (proportion of fire model testing points correctly classified) ranged from 0.61
to 0.62, while specificity (proportion of fire model testing points correctly classified) ranged
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from 0.66 to 0.68 (Figure 9, Table 3). Overall accuracy was 0.64 for both models. AUC measured
using reserved testing points was 0.70-0.71 (Figure 9, Table 3).

Both models have acceptable evaluation metrics, especially given that they do not account for
real-time fire conditions and fire-fighting effects. We repeat that fire modeling is inherently
uncertain given the stochastic nature of fire and how it is affected by factors not available for
statistical analyses, and that these results must be interpreted with due caution.

Figure 9. Modeled baseline fire ignition (top) and large fire occurrence (bottom) risk classified
using maximum sum of sensitivity and specificity threshold for evaluation.
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Table 3. Evaluation metrics for fire ignition and large fire occurrence risk models.

Metric
Fire Ignition

Large Fire
Occurrence

Mean 10-fold Cross-Validated Test AUC 0.72 0.67

Mean 10-fold Cross-Validated Training AUC 0.73 0.69

Mean 10-fold Cross-Validated 10% Test Omission 0.11 0.10

Sensitivity 0.62 0.61

Specificity 0.66 0.68

Precision 0.66 0.67

Accuracy 0.64 0.64

Test AUC 0.71 0.70

Data Products

Results of this project are available as data layers that can be viewed and downloaded from
Data Basin using the index below.

Map of all the below data layers:

1. Fire Risk Modeling Results, Santa Barbara County

Baseline Model Outputs:

1. Relative Probability of Fire Ignition, Santa Barbara County, Baseline

2. Relative Probability of Large Fires, Santa Barbara County, Baseline

Projections:

1. Relative Probability of Fire Ignition, CNRM-CM5, 2020-2050

2. Relative Probability of Fire Ignition, MIROC5, 2020-2050

3. Relative Probability of Large Fires, CNRM-CM5, 2020-2050

4. Relative Probability of Large Fires, MIROC5, 2020-2050

Percent Change Between Baseline and Projections:

1. Average Percent Change in Relative Probability of Fire Ignition

2. Percent Change in Relative Probability of Fire Ignition (CNRM-CM5)
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3. Percent Change in Relative Probability of Fire Ignition (MIROC5)

4. Average Percent Change in Relative Probability of Large Fires

5. Percent Change in Relative Probability of Large Fires (CNRM-CM5)

6. Percent Change in Relative Probability of Large Fires (MIROC5)

Select Data Inputs:

1. Fire Ignition Sample Points, Santa Barbara County, 1980-2019
2. Large Fire Sample Points, Santa Barbara County, 1980-2019
3. Fire Perimeters, Santa Barbara County, 1980 - 2019
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Appendices

Appendix 1. Correlation matrix of predictors across study area.
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Appendix 2. Model response plots.

A. Fire ignition model
a. Univariate plots
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b. Marginal plots
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B. Large fire occurrence model
a. Univariate plots
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b. Marginal plots
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