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9.1. INTRODUCTION

Predicting how climate change may affect wildlife spe-
cies requires understanding how their distributions are 
influenced by climate, vegetation, other species, and other 

habitat factors at various spatial and temporal resolu-
tions, as well as how conditions may change in the future. 
We modeled the current and future distributions of two 
species of conservation concern in California that may 
compete with one another—martens (Martes caurina) 
and fishers (Pekania pennanti)—using Maxent distribu-
tion modeling software [Phillips et al., 2006; Elith et al., 
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ABSTRACT

We used Maxent distribution models and MC1 to investigate effects of climate and vegetation on the distribution of 
martens (Martes caurina) and fishers (Pekania pennanti) in the Sierra Nevada, California, under current and projected 
future conditions. Both species are forest carnivores of conservation concern in California, where they reach their 
southernmost distributions. The species occupy similar ecological niches and may compete in the elevation band 
where their ranges overlap—but martens mostly occupy higher elevations with deep, persistent snow, and fishers 
occupy lower elevations with less snow. We systematically varied types of environmental variables (climate, vegetation, 
terrain, presence or absence of the other species) included in Maxent models and compared area‐under‐curve (AUC) 
values to determine what variables best predict current distributions. Terrain variables and presence or absence of the 
competing species did not add significantly to model fit. For fishers, models using both climate and vegetation varia-
bles outperformed those using only vegetation; for martens, there was no significant difference between vegetation‐
only, climate‐only, and vegetation + climate models. We then prepared climate + vegetation Maxent models using 
MC1‐derived variables that best approximated the variables used in the best current (benchmark) models, compared 
predicted distributions with benchmark models, and projected distributions to mid‐ and late 21st century using MC1 
vegetation projections and an array of downscaled general circulation models (GCMs) and emission scenarios at 
three resolutions (10 km, 4 km, 800 m). The finest available GCM resolution (800 m) provided the best spatial congru-
ence between MC1‐derived models and benchmark models. Regardless of GCM emission scenario, predicted marten 
distribution shifted to higher elevations, became more fragmented, and decreased in area by 40−85% (depending on 
scenario) compared to current distributions. Predicted changes in fisher distribution were more variable across GCM 
scenarios, with some increases and some decreases in extent and no consistent elevation shifts—suggesting high 
uncertainty in climate change effects on fishers. Management to benefit these species should consider ways of sustain-
ing appropriate vegetation conditions within their preferred climate envelopes via adaptive management.
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2011] and the dynamic vegetation model MC1 [Bachelet 
et al., 2001], which is described thoroughly in Chapter 1 
of this book. We assessed how the current distributions 
of these species are affected by climate variables, vegeta-
tion variables, terrain variables, and the presence or 
absence of the other species. We used the results of these 
analyses to inform models projecting the species’ future 
distributions using vegetation change projections from 
MC1 and multiple general circulation models (GCM), 
emission scenarios, and resolutions. The results can 
inform climate change vulnerability assessments and con-
servation plans for these species. They also illustrate how 
MC1 can be used in projecting future species distribu-
tions, and the importance of considering how the spatial 
resolution of downscaled climate futures may affect these 
projections.

Martens and fishers are forest carnivores that reach their 
southernmost distributions in the Sierra Nevada mountain 
range in California [Zielinski et al., 2005]. Their popula-
tions declined significantly over about the past 100−150 
years, due largely to habitat alteration by logging, grazing, 
and other human influences. Both are considered species 
of conservation concern by state and federal agencies, and 
the fisher is a candidate for listing under the California and 
US Endangered Species Acts. The species have similar eco-
logical niches within slightly overlapping elevation zones—
with the smaller marten occupying subalpine forests that 
experience deep and persistent snow, and the larger fisher 
occupying midelevation forests that experience less snow 
and warmer temperatures [Krohn et al., 1997]. Because 
martens and fishers require similar forest structural condi-
tions (dense, structurally complex forests with large trees 
and abundant dead wood) [Purcell et al., 2012] but different 
climate regimes (cooler, moister, and snowier conditions 
for martens; warmer, drier, and less snowy conditions for 
fishers) [Krohn et al., 1997, 2004], they offer a unique 
opportunity to investigate how climate change may affect 
them directly as well as through changes in vegetation. 
Also, because they compete with one another for food 
where their ranges overlap [Zielinski and Duncan, 2004], 
and fishers sometimes kill martens when they meet [Krohn 
et al., 2004], this system offers an opportunity to investigate 
how species interactions may affect future populations. 
The availability in California of downscaled GCM projec-
tions at several resolutions presented an opportunity to 
also assess how spatial resolution may affect projections of 
future species distributions—an important concern in 
climate vulnerability assessments [Franklin et al., 2012].

9.2. METHODS

We used Maxent software to produce and evaluate 
species distribution models—and MC1 and several 
downscaled GCM projections to project future vegetation 

and climate conditions—using a multistep process to 
analyze current and future species distributions. First, we 
systematically varied the types of environmental varia-
bles included in Maxent distribution models to determine 
what factors best predict these species’ distributions 
under current conditions. Specifically, we investigated 
how current distributions of martens and fishers are 
influenced by vegetation characteristics (e.g., forest 
composition and structure), climate (e.g., temperature, 
precipitation, snow depth and duration), terrain variables 
(e.g., elevation, slope), and the presence or absence of the 
other species. The goal of these analyses was to deter-
mine what types of variables best explain their current 
distributions (i.e., whether they are selecting primarily on 
the basis of local climatic conditions, vegetation charac-
teristics, terrain, the presence or absence of  the other 
species, or combinations of these or other factors).

The results of the current distribution analyses were 
then used to inform variable selection for models project-
ing possible future distributions to make predictions 
about the vulnerability of  these species to changes in 
climate and vegetation. Specifically, we used MC1 to sim-
ulate recent (1986−2005) and future (2046−2065 and 
2076−2095) vegetation conditions on the basis of climate 
projections from several emission scenarios downscaled 
at three spatial resolutions (800 m, 4 km, and 10 km). We 
created Maxent distribution models for these time peri-
ods by selecting environmental variables generated by 
MC1 that were similar to the variables that best predicted 
current species’ distributions. We compared the recent 
MC1‐based models with our current best (or benchmark) 
models to determine how well the MC1‐based models 
predicted species’ distributions at each resolution, and 
then compared how predicted distributions may shift in 
the future with climate and vegetation changes.

For each Maxent model, we inspected the permutation 
importance and univariate and marginal response curves 
for each variable to understand the relative contributions 
of each variable, or combinations of variables, to model 
performance, and what ranges of variable values the spe-
cies were selecting for or against [Phillips, 2006]. We used 
p < 0.05 as significance threshold for all statistical tests.

9.2.1. Current Species Distributions

For each species, we created and compared a wide array 
of potential distribution models using Maxent with 
default settings, relevant environmental predictors (avail-
able at 800 × 800‐m resolution for climate variables and 
100 × 100 m for other variables) (Table 9.1), and marten 
and fisher localities from two sources: the California 
Natural Diversity Data Base [CNDDB, 2011] and data 
compiled by the USDA Forest Service from a variety of 
survey and monitoring studies (R. Schlexer, USDA 
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Table 9.1 Predictors used in current conditions models.

Current vegetation (sources: existing vegetation, USDA Forest Service, Pacific Southwest Region, Remote Sensing Lab, 
2005−2009; vector, minimum mapping unit of 2.5 acres; FVEG, California Department of Forestry and Fire Protection, 
Fire and Resource Assessment Program, 2006, raster, 30 m)

CWHR2a,h Fisher CWHRa rating (arithmetic mean of REPRODUCTION, FEEDING, COVER) 100, excluding CWHR 
types red fir, lodgepole pine, subalpine conifer, and montane riparian

DFOR2a Proportion of moving window with CWHR‐type montane hardwood‐conifer, montane hardwood, 
ponderosa pine, Douglas fir, Sierran mixed conifer, Jeffrey pine, white fir, aspen, or eastside pine and 
CWHR density D (60−100% canopy closure)

DLFORa Proportion of moving window with CWHR‐type montane hardwood‐conifer, montane hardwood, 
ponderosa pine, Douglas fir, Sierran mixed conifer, Jeffrey pine, white fir, aspen, or eastside pine and 
CWHR density D (60−100% canopy closure) and CWHR size 4, 5, or 6 (>28 cm dbh)

HREPROa,h Proportion of moving window with fisher CWHR reproduction rating high
KHREPRObi Proportion of moving window with marten CWHR reproduction rating high (modified by Kirk and 

Zielinski [2009]), CWHR‐type lodgepole pine, red fir, subalpine conifer, white fir, or montane riparian, 
and CWHR size 4, 5, or 6 (>28 cm dbh), and CWHR density M or D (≥40% canopy closure)

LPN Proportion of moving window with CWHR‐type lodgepole pine and CWHR size 4, 5, or 6 (>28 cm dbh), 
and CWHR density M or D (≥40% canopy closure)

LRGFORa Proportion of moving window with CWHR‐ type montane hardwood‐conifer, montane hardwood, 
ponderosa pine, Douglas fir, Sierran mixed conifer, Jeffrey pine, white fir, aspen, eastside pine, and 
CWHR size 4, 5, or 6 (>28 cm dbh)

LRGHDWDc Proportion of moving window with CWHR‐type montane hardwood or montane hardwood‐conifer and 
CWHR size 3, 4, 5, or 6 (>15 cm dbh)

MSTRUCTd Score averaged over the moving window, which is the product of the following three factors: habitat 
indicator variable (1 for Sierran mixed conifer, white fir, red fir, or lodgepole pine; 0 otherwise); forest 
canopy closure [centroid of class interval: S (10−24%) = 17.5, P (25–39%) = 32, M (40−59%) = 50, and  
D (≥60%) = 80)]; tree size [centroid of class interval: 1 (0–2.5 cm dbh) = 0.5, 2 (2.5–15 cm dbh) = 3.5,  
3 (15–28 cm dbh) = 8.5, 4 (28 – 61 cm dbh) = 17.5, 5 (>61 cm dbh) = 24, and 6 (multilayered trees) = 37]

MSTRUCT2b Score averaged over the moving window, which is the product of the following three factors: habitat 
indicator variable (1 for red fir, or lodgepole pine; 0 otherwise); forest canopy closure [centroid of class 
interval: S (10−24%) = 17.5, P (25–39%) = 32, M (40‐59%) = 50, and D (≥60%) = 80)]; tree size 
[centroid of class interval: 1 (0–2.5 cm dbh) = 0.5, 2 (2.5–15 cm dbh) = 3.5, 3 (15–28 cm dbh) = 8.5,  
4 (28–61 cm dbh) = 17.5, 5 (>61 cm dbh) = 24, and 6 (multilayered trees) = 37]

PHDWDc Proportion of moving window with CWHR‐type montane hardwood or montane hardwood‐conifer, or 
secondary type riparian mixed hardwood, interior mixed hardwood, canyon live oak, black oak, interior 
live oak, black cottonwood, or montane mixed hardwood

RFRb Proportion of moving window with CWHR‐type red fir and WHR size 4, 5, or 6 (>28 cm dbh), and 
CWHR density M or D (≥40% canopy closure)

SMCd Proportion of moving window with CWHR‐type Sierran mixed conifer and WHR size 4, 5, or 6 (>28 cm 
dbh), and CWHR density M or D (≥40% canopy closure)

STRUCTa Score (from Davis et al. [2007]) averaged over the moving window, which is the product of the following 
three factors: habitat indicator variable (1 for montane hardwood‐conifer, montane hardwood, 
ponderosa pine, Douglas fir, Sierran mixed conifer, Jeffrey pine, white fir, aspen, eastside pine, red fir, 
lodgepole pine, subalpine conifer, or montane riparian; 0 otherwise); forest canopy closure [centroid of 
class interval: S (10−24%) = 17.5, P (25–39%) = 32, M (40−59%) = 50, and D (≥60%) = 80]; tree size 
[centroid of class interval: 1 (0–2.5 cm dbh) = 0.5, 2 (2.5–15 cm dbh) = 3.5, 3 (15–28 cm dbh) = 8.5,  
4 (28–61 cm dbh) = 17.5, 5 (>61 cm dbh) = 24, and 6 (multilayered trees) = 37]

STRUCT2a Score averaged over the moving window, which is the product of the following three factors: habitat 
indicator variable (1 for montane hardwood‐conifer, montane hardwood, ponderosa pine, Douglas fir, 
Sierran mixed conifer, Jeffrey pine, white fir, aspen, or eastside pine; 0 otherwise); forest canopy closure 
[centroid of class interval: S (10−24%) = 17.5, P (25–39%) = 32, M (40−59%) = 50, and D (≥60%) = 
80)]; tree size [centroid of class interval: 1 (0–2.5 cm) = 0.5, 2 (2.5–15 cm) = 3.5, 3 (15–28 cm) = 8.5,  
4 (28–61 cm) = 17.5, 5 (>61 cm) = 24, and 6 (multilayered trees) = 37]

WFR Proportion of moving window with CWHR‐type white fir and CWHR size 4, 5, or 6 (>28 cm dbh), and 
CWHR density M or D (≥40% canopy closure)

Terrain (source: National Elevation Dataset, US Geological Society, 2009, raster, 1 arc‐second)

(Continued)
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Forest Service, Pacific Southwest Research Station, 
unpublished data). All environmental predictor layers 
were smoothed with a 10‐km2 moving window because 
we have found in previous analyses [Spencer et al., 2015; 
Zielinski et al., 2015] that this moderate resolution per-
forms well across most variables and both species, and it 
is biologically justified as approximating the habitat area 
needed to support one to a few individuals of each spe-
cies. Prior to modeling, species locality data were filtered 
to remove redundant observations (i.e., the same observa-
tion repeated in multiple data sources), historical obser-
vations (pre‐1990), and observations not considered 
highly reliable (i.e., not supported by physical evidence, 
such as museum specimens, captures, photographs, or 
tracks). The detection datasets were further filtered for 
spatial independence (i.e., to avoid including multiple 
observations of the same individual and minimize bias 
due to spatial clumping of sampling effort) using a nearest‐
neighbor algorithm approximating home range diameter 
of the species. If  two marten observations were <3 km 
apart or two fisher localities were <5 km apart, the older 
or less reliable observation was removed.

We calculated correlations between each pair of envi-
ronmental variables to avoid including highly correlated 
variables (|r| > 0.85) within a model (e.g., we might use 
total annual precipitation or total winter precipitation in 
a model, but not both). We then ran univariate Maxent 
models for each species with each variable. Using varia-
bles that yielded the highest 10‐fold cross‐validated AUC 
values (area under the receiver operating curve; a meas-
ure of model fit that varies from 0 to 1.0 [Fielding and 
Bell, 1997] and omitting any variables with AUC < 0.7, 
we then created alternative Maxent models by combining 
variables into six different model classes: (1) climate only, 
(2) vegetation only, (3) climate + vegetation, (4) climate + 
vegetation + terrain, (5) climate + vegetation + presence/
absence of the other species, and (6) climate + vegetation 
+ terrain + presence/absence of the other species.

We compared the resulting multivariate models statisti-
cally to determine which factors most strongly predict 
 species’ distributions. Specifically, we compared 10‐fold 
cross‐validated AUCs using one‐way ANOVA, Tukey 
HSD tests, and t tests to determine the best predictive 
models. The relative contributions of variables to model 

ADJELEVe Latitude‐adjusted elevation (from Davis et al. [2007]) averaged over the moving window: 0.625 m was 
added to elevation for every 1 km north from the southernmost point in the study area

INSOL_INDf Solar insolation index (from Gustafson et al. [2003]) derived from slope and aspect and averaged over the 
moving windows = 2 – (sin((slope/90)180))*(cos(22 – aspect) + 1)

PSLOPEf Mean percent slope over the moving window
RELIEFf Mean value of local relief over the moving window, calculated as the standard deviation of elevation in a 

local 5 × 5 moving window
SW Mean value over the moving window of transformed slope aspect (from Franklin [2003]): cos(aspect‐255)
VRMf Mean over the moving window of the vector ruggedness measure (from Sappington et al. [2007]), which 

quantifies terrain ruggedness using vector analysis to capture variability in slope and aspect into a single 
variable; values can range from 0 to 1 but typically don’t exceed 0.4

Current climate (1986−2005; source: PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, raster, 
857.5 m)

PPTg Mean annual precipitation (mm) over the moving window
SNOWIe Number of months per year with average temperature < 0°C averaged over the moving window
SNOWI2e Mean amount of precipitation (mm) per year that fell in months with mean temperatures < 0°C averaged 

over the moving window
SUMMPPT Mean annual summer (July− Sept.) precipitation (mm) averaged over the moving window
SUMMTAMP Mean difference between maximum temperature and minimum temperature (°C) during summer months 

(July−Sept.) averaged over the moving window
SUMMTMAXe Mean summer (July−Sept.) maximum temperature (°C) averaged over the moving window
TMAXe Mean of the maximum temperature (°C) value for the month with the highest maximum temperature 

value each year (the month that got hottest) averaged over the moving window
TMINe Mean of the minimum temperature (°C) value for the month with the highest minimum temperature value 

each year (the month that didn’t get cold) averaged over the moving window
WINTPPTg Mean annual winter (Jan.−March) precipitation (mm) averaged over the moving window
WINTTMINe Mean winter (Jan.−March) minimum temperature (°C) averaged over the moving window

a–g Highly correlated variables (|r| > 0.85)
h Variables used only in fisher models
i Variables used only in marten models.

Table 9.1 (Continued)

0002548112.indd   138 8/6/2015   7:31:55 PM



SiMUlatiNG EFFECtS oF CliMatE aND VEGEtatioN ChaNGE oN MaRtENS aND FiShERS 139

performance were evaluated using permutation performance, 
a measure of  predictive power provided by Maxent soft-
ware and defined as the decrease in training AUC, normal-
ized to percentages, resulting from random permutation in 
variable values at training presence and background points 
[Elith et al., 2011]. The final best current distribution 
models for each species were used as benchmarks against 
which to evaluate the performance of models built with 
predictors produced by the MC1 vegetation model.

9.2.2. Future Projections

The analysis of current distribution models suggested 
that climate + vegetation models, at scales corresponding 
roughly with species’ home range sizes, were strong pre-
dictors of species distributions, but that terrain variables 
and presence or absence of the competing species did not 
add significantly to model fit. Informed by these analyses, 
we next created climate + vegetation models using the 
same process as above and variables from the MC1 global 
vegetation model (Table 9.2), which can be projected into 

the future. The future distribution models used projec-
tions from five different climate models/emissions scenar-
ios at three spatial resolutions (800 m, 4 km, and 10 km) 
averaged over three, 20‐year time periods (contemporary, 
1986–2005; midcentury, 2046–2065; and late century, 
2076–2095):

 • PCM1 [Washington et al., 2000; Meehl et al., 2003] A2 
(Nakicénovic ́et al., 2000) (10 × 10 km; from Lenihan et al. 
[2008])

 • Hadley CM3 [Gordon et al., 2000; Pope et al., 2000] 
A1Fi (10 × 10 km; from Hayhoe et al. [2004])

 • MIROC 3.2 medres [Hasumi and Emori, 2004] A2 
[Nakićenović et al., 2000] (4 × 4 km and 800 × 800 m)

 • Hadley CM3 [Johns et al., 2003] A2 [Nakićenović 
et al., 2000] (4 × 4 km and 800 × 800 m)

 • CSIRO Mk3 [Gordon, 2002] A2 [Nakićenović et al., 
2000] (800 × 800 m)

Results of the MC1‐based distribution models for the 
contemporary time period at the three different resolutions 
were compared with the benchmark models to determine 
whether they gave comparable results and were therefore 

Table 9.2 Predictors used in MC1‐based distribution models. Superscript letters indicate highly correlated variables (|r| ≥ 0.85).

Vegetation (simulated with MC1)

BURN Mean fraction of vegetation carbon burned
COARSEWOOD Mean fraction of total forest carbon in coarse wood carbon (4 × 4 km only)
FORC Mean total forest ecosystem carbon (g C/m2)
FORFRACT Mean ratio of total (aboveground and belowground) tree biomass over total 

ecosystem biomass; index of “woodiness”
FORIND Mean ratio of total (aboveground and belowground) grass biomass over total tree 

biomass; index of understory density and fine fuels (800 × 800 m and 10 × 10 
km only)

MAXTREE Average maximum tree LAI (m2/m2)
VCLASS Dominant (modal) vegetation class
VEGC Mean vegetation carbon (g C m2)
VTYPE Dominant (modal) vegetation type (800 × 800 m and 4 × 4 km only)

Climate (simulated with MC1)
MARCHSNOW Mean amount of snow (mm) on the ground in March (800 × 800 m and 4 × 4 km 

only)
PET Mean potential evapotranspiration (mm) (800 × 800 m and 4 × 4 km only)

Climate (sources: Climate Group, Oregon State University (http://prism.oregonstate.edu) and Meehl et al. [2007])
PPT Mean annual precipitation (mm)
SNOWI Mean number of months per year with average temperature < 0°C
SNOWI2 Mean amount of precipitation (mm) per year that fell in months with mean 

temperatures < 0°C
SUMMPPT Mean summer (July−Sept.) precipitation (mm)
SUMMTAMP Mean difference between maximum and minimum temperatures (°C) during 

summer (July−Sept.)
SUMMTMAX Mean summer (July−Sept.) maximum temperature (°C)
TMAX Mean maximum temperature (°C)
TMIN Mean minimum temperature (°C)
WINTPPT Mean winter (Jan.−March) precipitation (mm)
WINTTMIN Mean winter (Jan.−March) minimum temperature (°C)
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reliable predictors of marten and fisher distributions. 
Specifically, we compared predicted distribution—defined 
as predicted probability of occurrence greater than or 
equal to the maximum sensitivity plus specificity threshold 
provided by Maxent [Liu et al., 2013]—using the spatial 
congruence index [Legendre and Legendre, 1998; Franklin 
et al., 2012]. The best‐resolution MC1‐based models were 
then projected to the mid‐ and late‐century time periods 
under each emission/global circulation scenario. We calcu-
lated net change in predicted distribution relative to the 
contemporary time period and stable range (percent of 
contemporary distribution remaining suitable) at each 
time period to assess the potential vulnerability of marten 
and fisher to projected climate change.

9.3. RESULTS

9.3.1. Current Species Distributions

The distributions of  martens and fishers were well pre-
dicted by both vegetation‐only and climate‐only models 
(all AUCs > 0.8), but models combining both vegetation 
and climate variables performed significantly better than 

did models based on vegetation alone for fishers. There 
was no significant difference between the vegetation + 
climate model and the climate‐only or vegetation‐only 
marten models (Table  9.3). Terrain variables were not 
included in multivariate models for either species due to 
poor univariate performance (all AUCs < 0.7). For both 
species, the presence/absence of  the other species did not 
improve model predictive power relative to vegetation + 
climate models.

The best marten model included two climate predic-
tors and four vegetation variables (Table 9.4). Climate 
variables (annual precipitation and mean maximum 
temperature) accounted for 74.1% of  permutation 
importance, with mean maximum temperature con-
tributing the most (56.1%). These results and inspec-
tion of  response curves indicate that martens are 
strongly associated with areas experiencing low maxi-
mum temperatures and high annual precipitation that 
also support structurally complex forests and abun-
dant lodgepole pine.

The best fisher model included three vegetation and 
three climate predictors (Table  9.4), with vegetation 
 predictors accounting for 57.6% of permutation impor-
tance. STRUCT (an index of  forest structure based on 
tree size and canopy cover classes) was the dominant 
vegetation contributor, with a permutation importance 
of  38.2% (followed by proportions of  area classified as 
Sierran mixed‐conifer and hardwood vegetation types). 
Together the three climate variables (summer tempera-
ture amplitude, mean winter precipitation, and mean 
summer precipitation) contributed 44.4% of permuta-
tion importance. These results and inspection of 
response curves indicate that fishers are associated with 
dense forests supporting large mixed conifers and some 
hardwoods, in areas with moderate summer tempera-
tures and low to moderate precipitation in both winter 
and summer.

Table 9.3 AUC values for different model types for predicting 
current distributions of martens and fishers.

Model Fisher Marten

VEG 0.809 0.836
CLIM 0.824 0.837
VEG + CLIM 0.871a 0.858
VEG, CLIM, + TERR NAb NAb

VEG, CLIM, + SPECIES 0.865 0.858
VEG, CLIM, TERR, + SPECIES NAb NAb

a Significantly better than vegetation‐only model (P < 0.05).
b No terrain or species variables met the univariate AUC ≥ 
0.7 cutoff to be entered into multivariate model.

Table 9.4 Variables included in best models for current conditions, including the benchmark models and the MC1‐based 
models at three resolutions.

Species
Current Conditionsa 
(Benchmark) 800 m 4 km 10 km

Marten LPN, MSTRUCT, 
MSTRUCT2, STRUCT

BURN, FORC, FORFRACT, 
FORIND, MAXTREE, VCLASS

BURN, COARSEWD, FORC, 
FORFRACT, FORIND, 
MAXTREE, VCLASS

BURN, FORIND, 
VCLASS, VEGC

PPT, TMAX PET, PPT MARCHSNOW, WINTPPT PPT, SUMMPPT, 
SUMMTAMP, TMAX

Fisher PHDWD, SMC, STRUCT FORC, FORFRACT, FORIND COARSEWD, FORC, 
FORFRACT, FORIND, 
VCLASS

BURN, VCLASS, VEGC

SUMMPPT, SUMMTAMP, 
WINTPPT

PPT, SUMMTAMP SNOWIND, SUMMPPT, 
SUMMTAMP, WINTPPT

SUMMPPT, SUMMTAMP, 
TMIN, WINTPPT

a Variables averaged over a 10‐km2 moving window.
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9.3.2. Current Distributions Using MC1‐Based 
Variables

Of three resolutions available for MC1 results, the fin-
est (800 × 800‐m) resolution performed best at predicting 
the contemporary distributions of both martens and fish-
ers (Figure  9.1 and Table  9.5). The 10 × 10‐km model 
appears to grossly overestimate marten distribution com-
pared with the benchmark model (by an average of 1.4 
times as much area), while underpredicting fisher distri-
bution (average range ratio of 0.62, Figure 9.2). Model 
performance was very good at 800‐m resolution (AUC 
values of 0.84 for both marten and fisher). However, 
MC1 variables performed better for martens than for 
fishers: the spatial congruence index between MC1‐based 
distributions and benchmark models was 79% for martens 

and 60% for fishers, suggesting that MC1‐based models 
are reasonably reliable predictors of marten distribution 
but less so of fisher distributions.

The best 800‐m MC1‐based marten model was domi-
nated by two climate variables, annual precipitation and 
potential evapotranspiration (Table  9.4), which together 
accounted for 76.4% of the permutation importance. 
Vegetation variables contributed only 23.6% of permutation 
importance. These results and inspection of response curves 
show that the MC1‐based models provide results similar to 
those for the marten benchmark model; they indicate that 
marten distribution is strongly associated with areas having 
low potential evapotranspiration and abundant annual 
precipitation that also support high forest biomass. They 
further suggest that martens are associated with forests 
that experience relatively low biomass losses to fires.
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Figure 9.1 Influence of climate data resolution on spatial congruence of predicted contemporary species distribu-
tions for MC1‐based Maxent models compared with the benchmark distribution models for martens and fishers.

Table 9.5 Mean spatial congruence index (SCI) values for best models at each resolution.

Species Resolution Mean SCI ta dfa p Valuea

Marten 800 × 800 m 0.79 — —
4 × 4 km 0.73 14.6219 16.125 2.002e–10
10 × 10 km 0.69 20.9289 17.957 9.232e–14

Fisher 800 × 800 m 0.60 — —
4 × 4 km 0.57   2.8084 17.195 0.02398
10 × 10 km 0.50 10.0411 17.866 1.804e–08

a Both t and p values (adjusted for two comparisons with the Bonferroni method) are compared to 800 m.
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The best 800‐m MC1‐based fisher model also provides 
results similar to those of the fisher benchmark model, 
with similar permutation importance of vegetation vs. 
climate variables and using different but related variables 
to represent suitable conditions. It was dominated by 
three vegetation variables (Table  9.4), which together 
accounted for 66.1% of permutation importance. Two 
climate variables, annual precipitation and summer tem-
perature amplitude, contributed the remaining 33.9% of 
permutation importance. Similar to the benchmark 
model, these results and inspection of response curves 
support that fishers are associated with forests having 
high forest biomass in regions of the Sierra Nevada expe-
riencing moderate amounts of precipitation and low 
amplitude in summer temperatures.

9.3.3. Future Projections

With all three GCM projections using the A2 emissions 
scenario (CSIRO Mk3, Hadley CM3, and MIROC 3.2 
medres), Maxent models predict major contractions in 
marten distribution during the 21st century (net losses 
from 40% for CSIRO Mk3 to 85% for Hadley CM3) cou-
pled with greatly increased fragmentation and generally 
upslope shifts in distribution (Figures 9.3−9.5). Only 11% 
(Hadley CM3) to 38% (CSIRO Mk3) of marten distribu-
tion is predicted to remain stable through the late 21st 
century. With the Hadley CM3 projections (Figure 9.4), 
models predict a major contraction in marten distribu-
tion by mid‐21st century, followed by a slight expansion 
again by the end of the century, suggesting that there may 
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Figure 9.2 Maps of contemporary distributions for marten [top row, maps (a)−(c)] and fisher [bottom row, maps 
(d)−(f)] with resolution varying from coarsest [10 × 10 km, maps (a) and (d)] on the left, medium in the center  
[4 × 4 km, maps (b) and (e)], to finest on the right [800 × 800 m, maps (c) and (f)]. Hatched overlay shows the 
benchmark distribution based on the best current distribution models with 10‐km2 moving‐window averaging.
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be a midcentury bottleneck that marten populations must 
pass through.

Predicted changes in fisher distribution were far more 
variable between GCMs than those for marten. By late 
21st century, net changes in predicted fisher distribution 
range from a 33% loss (MIROC 3.2 medres) to a 38% 
gain (CSIRO Mk3), with 40% (MIROC 3.2 medres) to 
60% of fisher distribution remaining stable through the 
late century (Table 9.6). There was also no consistent pat-
tern of geographic or elevation shifts in the fisher projec-
tions. CSIRO Mk3 models project both downslope 
(generally westward) and upslope (eastward) expansion 
of fisher distribution along the length of the Sierra 

Nevada range (Figure 9.3), whereas the Hadley CM3 and 
MIROC 3.2 medres models project predominantly 
upslope shifts in the southern Sierra Nevada and both 
upslope and downslope expansion in the northern Sierra 
Nevada by late 21st century (Figures 9.4 and 9.5).

9.4. DISCUSSION

9.4.1. Current Species Distributions

Our results are consistent with previous findings that 
martens and fishers select structurally complex forest 
vegetation with dense canopies, large trees, and abundant 
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Figure 9.3 Predicted marten [top row, maps (a)−(c)] and fisher [bottom row, maps (d)−(f)] distributions under  climate 
change projections from the CSIROMk3 GCM with the A2 emission scenario at 800 × 800‐m resolution. Maps (a) 
and (d) show contemporary distributions (1986–2005); maps (b) and (e) show midcentury (2046–2065); maps (c) and 
(f) show late century (2076–2095). Hatched overlay shows the benchmark distribution based on the best current 
 distribution models with 10‐km2 moving‐window averaging. For color details, please see color plate section.
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deadwood components, and that martens are associated 
with higher‐elevation forest types (red fir, lodgepole pine) 
whereas fishers are associated with mid-elevation forest 
types (Sierran mixed conifers, mixed conifer‐hardwoods) 
[Purcell et al., 2012]. They also support that martens are 
better adapted to deep, soft, and persistent snow cover 
than fishers, due in part to lower foot‐loading (ratio of 
body mass to total foot surface area)—which enables them 
to travel more easily on top of snow [Krohn et al., 1997, 
2004]—and a propensity to forage and rest under the snow 
when it is available [Zielinski et al., 1983; Spencer, 1987).

Climate is a strong predictor of habitat characteristics 
for both species, but cannot account for vegetation 
 disturbance history or other factors that also influence 

habitat quality. Our findings that fisher distribution was 
best predicted by vegetation + climate models—whereas 
there was no significant difference between vegetation + 
climate, climate‐only, or vegetation‐only models for 
marten—may reflect differences in vegetation disturbance 
patterns in the elevation zones occupied by the two species. 
Forests in the midelevation zone occupied by fishers have 
experienced much greater human‐induced changes in 
vegetation structure and composition since Euro‐
American colonization in the Sierra Nevada compared to 
the higher‐elevation forests occupied by martens. This is 
due in part to more intensive logging, fire suppression, 
and other management actions in mid-elevation compared 
to higher‐elevation forests—as well as the protection of 
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Figure 9.4 Predicted marten [top row, maps (a)−(c)] and fisher [bottom row, maps (d)–(f)] distributions under  climate 
change projections from the HadCM3 GCM with the A2 emission scenario at 800 × 800‐m resolution. Maps (a) and 
(d) show contemporary distributions (1986–2005); maps (b) and (e) show midcentury (2046–2065); maps (c) and 
(f) show late century (2076–2095). Hatched overlay shows the benchmark distribution based on the best current 
 distribution models with 10‐km2 moving‐window averaging. For color details, please see color plate section.
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much more land in national parks and wilderness areas at 
higher elevations [Beesley, 1996]. The stronger influence 
of management actions on forest condition in the range 
of fishers may have partially decoupled the correlation 
between vegetation and climate within the fisher’s elevation 

band: Whereas climate alone is a good general predictor 
of where fishers occur, adding vegetation characteristics 
improves the predictive power of distribution models.

Other recent studies have also shown the importance 
of  considering both vegetation variables and climate 
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Figure 9.5 Predicted marten [top row, maps (a)−(c)] and fisher [bottom row, maps (d)−(f)] distributions under  climate 
change projections from the MIROC 3.2 medres with the A2 emission scenario at 800 × 800‐m resolution. Maps (a) 
and (d) show contemporary distributions (1986–2005); maps (b) and (e) show midcentury (2046–2065); maps  
(c) and (f) show late century (2076–2095). Hatched overlay shows the benchmark distribution based on the best 
 current distribution models with 10‐km2 moving‐window averaging. For color details, please see color plate section.

Table 9.6 Net change and stable range for marten and fisher distribution projections at 800 × 800‐m resolution for three 
scenarios and two future time periods.

CSIROMk3 A2 Hadley CM3 A2 MIROC 3.2 medres A2

Species 2046−2065 2076−2095 2046−2065 2076−2095 2046−2065 2076−2095

Marten Net change −0.20 −0.40 −1.00 −0.85 −0.46 −0.84
Stable range 0.60 0.38 0.00 0.11 0.52 0.14

Fisher Net change 0.14 0.38 −0.11 0.12 −0.01 −0.33
Stable range 0.62 0.60 0.50 0.52 0.59 0.40
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variables in species distribution models, especially in 
human‐altered ecosystems. Barbet‐Massin et al. [2012] 
found that model accuracy is better, and explanatory 
power higher, for models combining climate and vegeta-
tion variables compared to climate‐only or vegetation‐
only models for numerous taxa in Europe at 50‐km 
resolution. Sohl [2014] also found that landcover + climate 
models provide better fit than do either landcover or 
 climate‐only models for 50 bird species in the US. Using cli-
mate data alone resulted in broad, generalized distributions, 
and adding landcover variables decreased predicted suit-
able area for most species, in large part due to human 
alterations of  landcover.

Once the effects of climate and vegetation were included 
in a marten or fisher distribution model, adding presence 
or absence of the other species did not contribute signifi-
cantly to model predictive power. These results suggest that 
martens and fishers primarily select habitats according to 
appropriate climate and vegetation conditions, rather 
than the presence or absence of the other species. Presence 
of fishers may affect some individual martens in their 
narrow contact zone, but does not appear to be a current 
driving factor behind the distribution of marten popula-
tions. Evidence from telemetry and survey data suggest 
that fishers slightly contract their habitat use downslope 
during the snowy season (perhaps to avoid deeper or 
softer snows at higher elevations) and expand upslope 
again during snow‐free seasons [Spencer et al., 2015], 
whereas martens expand their ranges downslope during 
the snowy season, and contract upslope during warmer, 
snow‐free seasons (perhaps to avoid high temperatures) 
[Zielinski et al., 2015]. Although these expansions and 
contractions tend to minimize species range overlap year‐
round, they appear to be influenced more by climate than 
by presence or absence of the other species, because mar-
tens exhibit this pattern even in regions lacking fishers 
[Zielinski et al., 2015].

9.4.2. Current Distributions Using MC1‐Based 
Variables

Not surprisingly, the finest available downscaled GCM 
resolution (800 m) performed the best at predicting cur-
rent distributions of both species. As also found by 
Franklin et al. [2012] for numerous plant species, we saw 
large overpredictions of marten distributions at coarser 
resolutions (Figure  9.2a−c). However, this pattern was 
not consistent for fisher distributions (Figure  9.2d−f). 
This may be due to the relatively poor performance 
of  MC1‐derived vegetation variables in reproducing 
benchmark model projections, coupled with the greater 
permutation importance of vegetation variables in fisher 
models. Because different MC1‐derived vegetation variables 
entered the best models at each resolution, this variability 

increases uncertainties in fisher model projections both 
within and between the three resolutions.

Similar to the marten benchmark models, climate 
variables proved to be very good predictors of marten 
distribution in the MC1‐based models (accounting for 
76.4% of the permutation importance for the 800‐m 
model); and adding vegetation variables did not contribute 
much to model performance (only 23.6% of permutation 
importance). However, for fishers, the apparent decoupling 
of vegetation‐climate correlations due to greater human 
influences on their habitat may make contributions from 
vegetation variables more important in modeling perfor-
mance. Hence, if  MC1‐derived vegetation variables are 
not strong reflections of on‐ground habitat conditions 
compared to our best available vegetation variables from 
other sources, this could adversely affect model perfor-
mance for fishers, and greatly add to uncertainties in 
future projections of fisher distribution.

9.4.3. Future Projections

There are large uncertainties about future climate and 
vegetation conditions in the Sierra Nevada, due to differ-
ences among the different GCM and emission scenarios 
used for projections [Lenihan et al., 2008; Hayhoe et al., 
2004]. Climate models agree over the general warming 
trend in the western US, but projections of precipitation 
are much less certain, increasing uncertainties in projec-
tions of future drought stress, fuels conditions, and fire 
hazards [Westerling and Bryant, 2008]. Projections of 
snowpack depth and duration are also highly uncertain 
[Mote, 2006; Kapnick and Hall, 2012). Climate projec-
tions from the fifth assessment report indicate declines in 
spring snow cover and increases in summer temperatures 
[e.g., Peacock, 2011]. Ensemble means indicate that the 
CMIP5 model runs over the western US do not show any 
lessening of the trends already projected for the fourth 
assessment report [IPCC, 2007, 2013). Increased climate 
variability may allow for some very high snow years as 
well as extremely low snow years.

How marten and fisher populations may respond to 
these potential changes is also uncertain. Decreasing 
snow cover may benefit fishers, which are not as well 
adapted to deep, soft, or persistent snow, due to higher 
foot‐loading [Krohn et al., 1997, 2004]; but increasing 
temperatures and temperature variability are likely detri-
mental to both species, which seek out habitats with cool, 
mesic microclimates and low‐temperature amplitudes. 
How increased interannual variability in precipitation 
and snowpack may affect the species is unknown, but 
they may increase the amplitude of population fluctua-
tions and extinction risks in both species. Lawler et al. 
[2012] created climate‐envelope models to detect shifts for 
martens and fishers across their entire North American 
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ranges in response to projected changes in temperature 
and precipitation using coarse resolution (50‐km) climate 
data without considering effects of topography or vegeta-
tion. Their results showed contractions along southern 
portions of the species’ ranges and that both species will 
lose most of their climatically suitable range in the con-
tiguous United States by the end of this century.

Future decoupling of climate envelopes from vegeta-
tion conditions, due to vegetation response lags, may 
spell even greater trouble for species such as martens and 
fishers whose niches are influenced by both. Barbet‐
Massin et al. [2012] and Sohl [2014] found that climate‐
only models predict larger shifts in future range size than 
do landcover‐only models, and our projections for mar-
tens show some evidence of future decoupling having 
adverse effects, at least for martens. In our models, all 
three GCMs (CSIRO Mk3, Hadley CM3, and MIROC 
3.2 medres) using the A2 emissions scenario paint a rather 
dire future picture for martens in the Sierra Nevada 
(Figures 9.3−9.5), with major contractions and fragmen-
tation in predicted distribution. In the Hadley CM3 
projections, a major contraction in marten distribution 
by the mid‐21st century (Figure  9.4b) is followed by a 
slight expansion again by the end of the century 
(Figure 9.4c). The midcentury contraction may reflect a 
bottleneck for marten populations due to decoupling of 
the species’ preferred climatic vs. vegetation conditions as 
the climate shifts more rapidly than vegetation can respond.

The apparent historical decoupling of climate‐vegetation 
associations for fishers, due to human influences on vege-
tation conditions, has already increased uncertainties in 
both current and future distribution projections. Further 
decoupling due to climate change is likely to have adverse 
effects on both martens and fishers. However, these cor-
relation analyses cannot attribute cause‐effect relations, 
and it remains unknown whether martens and fishers will 
abandon current vegetation community associations to 
stay within preferred climate envelopes (as long as forest 
structural conditions are appropriate). Also, complex 
topography can cause microclimate conditions that are 
not represented by interpolated climate from a limited 
number of meteorological stations, allowing some decou-
pling from regional climate [Daly et al., 2010]. Complex 
terrain in the Sierra Nevada may cause inversions and 
cold‐air ponding, for example, which may result in refugia 
with appropriate climate and vegetation conditions that 
cannot be predicted with the current models.

9.4.4. Conclusions

Based on the results of these analyses and our general 
knowledge of marten and fisher ecology, we suspect that 
the distribution of martens is likely to significantly 
decrease and become more fragmented in the future. 

Martens may persist in areas that retain deep, persistent 
snow and some dense forest patches with large trees, 
perhaps in high‐elevation canyons and valleys. The future 
of fishers is even more uncertain, with model projections 
based on the different GCM emission scenarios showing 
either distribution expansions or contractions. Con-
servation actions for these species should consider how 
management may be able to help sustain appropriate 
 vegetation conditions within the climate envelopes 
required by each species while sustaining or increasing 
overall ecosystem resilience in the face of climate change. 
It won’t be easy, and it will require management to adapt 
as conditions change.
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