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Abstract
Questions: To what extent do plant species traits,
including life history, life form, and disturbance
response characteristics, affect the degree to which
species distributions are determined by physical
environmental factors? Is the strength of the
relationship between species distribution and envir-
onment stronger in some disturbance-response types
than in others?
Location: California southwest ecoregion, USA.
Methods: We developed species distribution models
(SDMs) for 45 plant species using three primary
modeling methods (GLMs, GAMs, and Random
Forests). Using AUC as a performance measure of
prediction accuracy, and measure of the strength of
species–environment correlations, we used regression
analyses to compare the effects of fire disturbance
response type, longevity, dispersal mechanism, range
size, cover, species prevalence, and model type.
Results: Fire disturbance response type explained
more variation in model performance than any
other variable, but other species and range charac-
teristics were also significant. Differences in
prediction accuracy reflected variation in species life
history, disturbance response, and rarity. AUC was
significantly higher for longer-lived species, found at
intermediate levels of abundance, and smaller range
sizes. Models performed better for shrubs than sub-
shrubs and perennial herbs. The disturbance re-
sponse type with the highest SDM accuracy was
obligate-seeding shrubs with ballistic dispersal that
regenerate via fire-cued germination from a dor-
mant seed bank.
Conclusions: The effect of species characteristics on
predictability of species distributions overrides any
differences in modeling technique. Prediction accu-
racy may be related to how a suite of species

characteristics co-varies along environmental gradi-
ents. Including disturbance response was important
because SDMs predict the realized niche. Classifica-
tion of plant species into disturbance response types
may provide a strong framework for evaluating
performance of SDMs.

Keywords: Chaparral; Coastal Sage Scrub; Distur-
bance response; Fire; Life history traits; Rarity;
Species range.

Nomenclature: (Hickman 1993)

Abbreviations: AUC5Area under the curve; CT5

Classification tree; DEM5Digital elevation model;
GAM5Generalized additive model; GLM5Gener-
alized linear model; RF5Random forests;
ROC5Receiver-operating characteristic; SDM5

Species distribution model; TMI5Topographic
moisture index.

Introduction

Species distribution models (SDMs) estimate
species responses to environmental gradients, and
are used to make spatial predictions of habitat suit-
ability or probability of species occurrence
(Franklin 1995; Scott et al. 2002; Guisan et al. 2006).
While the ecological underpinning of SDMs is the
species–environment relationship, the models are
developed using data on the actual distribution of
species occurrences, which often reflect the com-
bined influences of multiple interacting biotic and
abiotic factors, including the spatial variation in
disturbance regime characteristics (Pausas 1999;
Pausas & Lavorel 2003; Pausas et al. 2004). There-
fore, the models may account for how species
environmental tolerances are convolved with their
physiological adaptations to other limiting factors,
such as periodic disturbance.

Because species traits may reflect their differ-
ential responses to processes that control their
distribution, these traits may also affect the perfor-
mance of SDMs. Some studies have explored
whether species rarity (Rabinowitz 1981) affects the
ability to predict their distributions from environ-
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mental factors. In such studies, SDMs for rarer spe-
cies, those that have smaller ranges, narrower
ecological tolerances, or both, tended to have higher
prediction accuracy than models developed for
widespread, generalist species (e.g., Segurado &
Araújo 2004; Seoane et al. 2005; Elith et al. 2006;
Hernandez et al. 2006) because it is easier to sepa-
rate suitable from unsuitable habitat for species with
restricted environmental tolerances or very specific
habitat requirements. Other studies have examined
morphological, physiological, or ecological species
traits with respect to SDM performance; these in-
cluded migratory status, body size, and affinity with
fine-scale habitat features for birds (Stockwell &
Peterson 2002; McPherson & Jetz 2007), mobility
and body size for butterflies (Poyry et al. 2008), and
pollination type, leaf longevity and type, succes-
sional status, maximum growth rate, shade tole-
rance, and drought tolerance for plants (Kuhn et al.
2006; Guisan et al. 2007; Zimmermann et al. 2007).
Although disturbance regime characteristics strong-
ly affect distribution patterns in many regions, the
relationship between species disturbance response
and the strength of species–environment relation-
ships has not been examined in comparison with
other species traits.

The classification of species traits into dis-
turbance response functional types has provided a
framework for analysis and prediction in commu-
nity and evolutionary ecology (Gillison & Carpenter
1997; Smith et al. 1997; Diaz et al. 1998; Ackerly
2003; Pausas & Lavorel 2003; McGill et al. 2006;
Syphard et al. 2006). Disturbance response classifi-
cations often incorporate life history and
demographic traits with disturbance response stra-
tegies, and these groups of species tend to show
predictable changes along environmental as well as
disturbance gradients (Noble & Gitay 1996; Rusch
et al. 2003). Environmental tolerances and physio-
logical adaptations also tend to co-vary with plant
life form (Raunkiaer 1934), life history, and fire re-
sponse strategies (Chapman & Crow 1981; Keeley
1981, 1998; Ackerly et al. 2002), largely due to re-
source allocation and life-history tradeoffs (Austin
1987; McGill et al. 2006).

Our objective was to evaluate whether species
traits, including life history, life form, and distur-
bance response characteristics, affect the degree to
which species distributions are determined by phy-
sical environmental factors by examining the
relationship between these traits and model perfor-
mance in SDMs developed for plant species in a fire
disturbance-prone region. We classified species into
disturbance response types based on unique combi-

nations of life form and fire response to evaluate
their relative effect on prediction accuracy.
Because the SDM literature has focused on the pre-
diction accuracy of different modeling methods
(e.g., Moisen & Frescino 2002; Segurado & Araújo
2004; Elith et al. 2006; Maggini et al. 2006),
we also compared the magnitude of the effect of
disturbance response and other species character-
istics to the effect of model type on model
performance. We developed models for 45 plant
species in the southwestern ecoregion of California
using four modeling methods, and compared the
performance of these models to address the follow-
ing predictions:

Hypothesis 1: Species traits that characterize fire
disturbance response are more strongly related to
SDM performance than other ecological and range
characteristics because fire disturbance strongly
influences plant species distributions. Fire is the pre-
dominant disturbance agent in southern California, as
in other Mediterranean-type ecosystems, and many
plant species have life-history traits that determine their
patterns of establishment following fire.

Hypothesis 1.1: Obligate seeder shrub species
have a narrower range of ecological tolerances than
resprouting shrubs and other fire response types, and
their distributions will be the most predictable from
environmental factors. Although adult obligate seeder
shrubs are killed by fire, these species produce long-
lived fire-refractory seeds that only germinate in re-
sponse to fire, and they typically have very short seed
dispersal distances (ballistic dispersal mechanisms).
Obligate resprouting shrubs are top-killed by fire, but
they respond through vigorous resprouting, can re-
cruit in gaps between fires, and have various seed
dispersal syndromes. Facultative seeders regenerate
using both strategies of fire-cued germination and ve-
getative resprouting. Some species in the region are
unable to resprout or to respond to fire through fire-
cued seed germination and instead rely upon seed
dispersal into open areas after fire (Keeley 2000).

Hypothesis 1.2: Shrubs in general have higher
site fidelity and therefore more predictable distribu-
tions than earlier-successional and shorter-lived
sub-shrubs.

Hypothesis 2: In addition to fire disturbance re-
sponse, other ecological and range characteristics
will affect performance more than the modeling
method used.

Hypothesis 2.1: Plant species that are late succes-
sional (longer-lived, woody life forms) will have
distributions more predictably related to broad-scale
environmental factors than pioneer species. Species
with the former traits establish and persist in suitable
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sites throughout their range, and therefore are detect-
able in species surveys (a factor that enhances
accuracy in SDM). Their habitat suitability is also
likely to be described by persistent features of the
physical environment that are frequently available as
maps for predictive SDM, such as climate, substrate
and topography (Franklin 1995). Early-successional
‘pioneer’ species (herbaceous life forms, dependent on
long-distance seed dispersal) may be more difficult to
model (Guisan et al. 2007; Zimmermann et al. 2007)
because they are associated with transient habitat fea-
tures (e.g., light gaps) that are not always adequately
captured in GIS maps of broad-scale environmental
factors, and because they may not occupy all suitable
habitat owing to dispersal limitations.

Hypothesis 2.2: Because species distribution
patterns also reflect their relative capacity for dis-
persal, species with shorter dispersal distances have
better site persistence and more specialized adapta-
tions to site conditions, and thus would be more
easily predicted with models.

Methods

Study area and species data

The coastal ranges and interior foothills of
southern California support shrubland vegetation
that is adapted to the Mediterranean-climate of the
region, characterized by cool, wet winters and
warm, dry summers. The most extensive vegetation
type is chaparral, which is composed of dense, ever-
green woody shrub species that are resilient to
periodic wildfire (Keeley & Davis 2007). The dis-
tribution of chaparral species is differentially
influenced by factors such as elevation, slope aspect,
coastal–desert exposure, substrate, and fire regime
(Hanes 1971). Sage scrub is the second most ex-
tensive vegetation type in the region and consists of
drought-deciduous sub-shrubs that typically cover
coastal slopes in drier locations and at lower eleva-
tions than chaparral (Westman 1982; Malanson &
O’Leary 1995).

The U.S. Forest Service Wieslander Vegetation
Type Map (VTM) survey was conducted from 1929
to 1934 in California, USA (Wieslander 1935a, b).
The survey recorded data on abundance of trees,
shrubs and herbaceous species for �18 000 plots
across California (http://vtm.berkeley.edu/) (Kelly
et al. 2005). To develop SDMs, we used a database
that included species cover and plot location for
1471 VTM shrub plots that occurred within the
Natural Communities Conservation Planning area

(Taylor 2004), within California’s southwest ecor-
egion (as defined in Hickman 1993) (Fig. 1). Because
the original plot locations were drawn on 1:64 000
scale maps, the locations of the digitized points were
approximated using a circle with a radius of 300m.
This imprecision limits the use of VTM data for
some applications (Keeley 2004); however, VTM
data have been shown to be suitable for species dis-
tribution modeling (Vayssiéres et al. 2000; Franklin
2002). We assumed that, because the environmental
predictors used in this study vary gradually over
space, uncertainty in plot locations simply added
some measurement error to the data.

Of the 233 species recorded in the plot data, we
selected 45 for modeling. We omitted species if there
were fewer than 30 plots (prevalence o0.02) in
which the species was present. Our species dataset,
therefore, consisted of 1,471 locations indicating the
presence and absence of 45 species, primarily woody
shrubs and suffrutescent sub-shrubs, but also per-
ennial herbs, vines and succulents, typical of
chaparral or sage scrub (see supporting information
Appendices S1, S2).

Environmental predictors

Based on their hypothesized relationship to the
distribution of plant species in southern California
(e.g., Davis & Goetz 1990; Franklin et al. 2000;
Meentemeyer et al. 2001; Franklin 1998, 2002), we
evaluated eight climate, terrain, and soil variables as
environmental predictors (Table 1). The climate
variables, including mean annual precipitation,
mean minimum January temperature, and mean
maximum July temperature were interpolated to 1-
km resolution maps using climate station data from
1966 to 1995 and regression kriging with elevation
as a covariate (Franklin et al. 2001a). Solar radia-
tion mediates temperature and therefore available
plant moisture (via evapotranspiration in this semi-
arid, summer-dry environment). To develop grids of
terrain-distributed solar radiation from a digital
elevation model (DEM) (Dubayah & Rich 1995), we
used the Solar Analyst 1.0 extension for ArcViewTM

GIS and U.S. Geological Survey 30-m resolution
DEMs. We calculated daily insolation for the sum-
mer and winter solstice (using site latitude of 331N,
sky size of 200 cells per side, and 0.2 clear sky irra-
diance, the fraction of global normal radiation flux
that is diffuse), and used these two variables to re-
present the intra-annual extremes of topographically-
patterned radiation. The Topographic Moisture
Index (TMI) represents relative soil moisture avail-
ability based on upslope catchment area and slope
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angle, and was also calculated from the DEM
(Moore et al. 1991; Wilson & Gallant 2000). We
created a grid of soil type using the attribute soil or-
der from the California State Soil Geographic
Database (STATSGO).

For those environmental predictor variables
whose resolution was coarser than the 300m radius
of the VTM plots (e.g., climate and soil), we as-
signed values through a GIS overlay technique. For
variables with finer resolution (e.g., terrain), we cal-

culated the mean of those cells that fell within the
extent of the 300m plot.

Species distribution modeling procedures

We developed species distribution models using
three different methods: generalized linear models
(GLMs), generalized additive models (GAMs), and
Random Forests (RFs) (details in Appendix S1).

Table 1. Environmental variables used to predict plant species distributions. �http://gis.ca.gov/catalog/BrowseRecord.
epl?id=21237

Variable Resolution Source Range

Mean January minimum temperature 1 km J. Michaelson, unpubl. data 6.10 to 7.201C
Mean July maximum temperature 1 km J. Michaelson, unpubl. data 24.62 to 36.391C
Mean annual precipitation 1 km J. Michaelson, unpubl. data 216 to 1001mm
Mean summer solstice solar radiation 30m Derived from DEM (U.S. Geological Survey) 26.2 to 94.3W h/m2

Mean winter solstice solar radiation 30m Derived from the DEM 2.0 to 49.8W h/m2

Slope gradient 30m Derived from the DEM 0.04 to 66.93%
Topographic moisture index 30m Derived from the DEM � 7.57 to 8.97 (unitless)
Soil type (order) 1:250 000 State Soil Geographic (STATSGO) data base for

California, U.S. Department of Agriculture Natural
Resources Conservation Service�

13 categories

Fig. 1. VTM shrub plot locations within the Natural Communities Conservation Planning area in southern California’s
southwest ecoregion.
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Classification trees (CTs) were also tested but
showed poor model performance (Appendix S1) and
will not be discussed in detail. GLMs are extensions
of linear regression that allow binomial distribu-
tions that are appropriate for presence/absence data
to be modeled by specifying a logit link and bino-
mial response (Venables & Ripley 1994). Residuals
of GLMs were tested for spatial autocorrelation
(SA). Prior to modeling, species cover was also tes-
ted for SA. Because there was minimal suggestion of
SA (Appendix S3), non-spatial models were used.

GAMs allow the structure of the data to de-
termine the shape of the response curves by
replacing global regression coefficients with local
smoothing functions (Yee &Mitchell 1991). CTs use
binary recursive partitioning to develop classifica-
tion rules that can be used to classify new
observations (Breiman et al. 1984). While CTs easily
handle categorical predictors and characterize vari-
able interactions (De’ath & Fabricius 2000), they
can produce very different models if the inputs are
slightly varied (Edwards et al. 2006). Random For-
ests accounts for much of the instability of CTs by
developing many (500–2000) tree models that all use
random subsets of the observations and the pre-
dictor variables, and averages them (Breiman 2001).

We evaluated linear and quadratic relationships
for all the continuous variables in the GLMs and
used three target degrees of freedom for smoothing
splines in the GAMs. The deviance explained in ex-
ploratory simple models developed for a subset of
species was consistently highest for the three climate
variables, intermediate for the terrain variables, and
lowest for soil type. We used these rankings to es-
tablish the order to enter the variables and
automated backward stepwise procedures to select
final GLM and GAM models for each species.

We used bootstrapping (Wintle et al. 2005), re-
sampling the data and building a series of models
(500) that optimize the estimate of predictive per-
formance, for GLMs and GAMs. The performance
evaluation measure used was the area under the
curve (AUC) for receiver-operating characteristic
(ROC) plots (Hanley & McNeil 1982); Sensitivity

and specificity are also reported (Appendix S1). The
AUC (ranging from 0.5 to 1.0) is interpreted as the
probability that, for a randomly selected set of pre-
sence–absence observations, the model prediction
for the presence observation will be higher than the
prediction for the absence observation. For Random
Forests models, we developed 500 trees and eval-
uated three randomly selected variables for each tree,
as recommended by Breiman (2001), who suggested
that the square root of the number of variables gives
optimum results. To calculate the AUC, we used the
averaged ‘out-of-bag’ predictions from the models.
All modeling was carried out in R 2.7.0 (R Develop-
ment Core Team, Vienna, Austria).

Analysis of species characteristics affecting model
performance

The demographic attributes of the native shrub
species in southern California are closely related to
their fire disturbance response strategy (Keeley
1986). Yet, there are additional characteristics of
shrubs and sub-shrubs that make them, and their
distributional patterns, different from each other. In
general, sub-shrubs are less shade tolerant and more
sensitive to fire than shrubs; they mature early and
have high rates of establishment (particularly on
more xeric sites), and they recruit continuously be-
tween fires (Westman 1982; Zedler 1995; DeSimone
& Zedler 2001). Like facultative seeders, these sub-
shrubs respond to fire both by resprouting and
seeding. However, most facultative seeder shrubs
have fire-cued seed germination, whereas seed ger-
mination in sub-shrubs is rarely fire-cued.

Considering natural groupings of species life
form and fire response strategy, we used a fire dis-
turbance response classification, similar to others
developed in the region (e.g., Franklin et al. 2001b;
Syphard et al. 2006), to evaluate the relative effects
of these unique combinations of life form and fire
response on prediction accuracy (Table 2). We also
included perennial herbaceous species as a category
for analysis. Although the plant species in our study
separate well into fire disturbance response types,

Table 2. Species disturbance response and range traits.

Traits Description (States, Units, Range of values)

Dispersal syndrome Ballistic, Gravity, Vertebrate-dispersed, Wind- dispersed (in order of shortest to longest dispersal distance)
Longevity Years. 10–200.
Disturbance response shrubFac 5 facultative seeder shrub; shrubOS 5 obligate seeder shrub; shrubOR 5 obligate resprouters shrub;

subshrFac 5 resprouting sub-shrub; sub-shrub S 5 post-fire seeding sub-shrub; perrherb 5 perennial herb
Range size Number of ecoregions in which species occurs. Small (1–7 ecoregions), Medium (8–18), Large (19–29)
Prevalence Proportion of plots where a species occurred. Percentage. 1–53%
Cover Average cover in plots where species occurred. Percentage. 4–49%
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some demographic characteristics, such as seed dis-
persal and longevity, may vary among species within
any of these groups. Therefore, we also evaluated
these traits separately in our analysis (Table 2; Ap-
pendix S2). Because there is very little information
in the literature about the effective dispersal dis-
tances of our species, we grouped species according
to their primary or least-distance limiting seed dis-
persal mechanism (i.e., we expected the dispersal
distances to vary from shortest to longest by species
that are ballistic, gravity, vertebrate-dispersed, or
wind-dispersed, respectively). Despite these general
expectations, we recognize that, in some instances,
the effective dispersal distances of ballistic or grav-
ity-dispersed species could be equally short, and the
distances of animal- or wind-dispersed species could
be equally long (Parker & Kelly 1989).

One common approach used when studying the
effect of species range characteristics on SDMs is to
classify species into different categories (Zimmer-
mann et al. 2007; Franklin et al. 2009). In this study,
we analyzed ordinal or continuous measures of geo-
graphic range, species abundance and prevalence
within the study area to explore their effects in-
dependently (for example see also Brotons et al. 2004;
Segurado & Araújo 2004; Luoto et al. 2005; Elith et
al. 2006). We determined species abundance in plots
from relative cover data recorded during the VTM
survey. Species prevalence was based on the frequency
of species presence (proportion of plots where a spe-
cies occurred). To determine range size, we calculated
the number of ecoregions in which the species had
been recorded (as defined in Hickman 1993), and then
classified the species as having a small (1–7 ecor-
egions), medium (8–18 ecoregions), or large (19–29
ecoregions) range (Table 2; Appendix S2).

The performance measure of each model for
each species (i.e., the AUC) was the response
variable used to address the hypotheses. To in-
vestigate the effect of species ecological and range
characteristics, and model type, on prediction accu-
racy, we first estimated simple regression models
for each explanatory variable. These included fire
response type, species longevity, cover, dispersal
type, range size, prevalence (Table 2), and model
type. We also developed a simple model using spe-
cies as the predictor for comparison purposes. Thus,
the data consisted of performance measures for
three models for 45 species as the response, and the
associated species traits as predictors. Because ex-
plained variance, the coefficient of determination
R2, is well established and easy to interpret, we re-
port the results of simple linear models for this
analysis.

After developing and assessing the simple mod-
els for each of the explanatory variables, we
examined all predictors for multicollinearity using
correlation coefficients, analysis of variance, and
contingency table analysis for continuous, continuous
versus categorical, and categorical versus categorical
variables, respectively. We then estimated a multiple
regression model based on uncorrelated predictors
(and excluding species as a factor). We included the
variables in the final model in order of the amount of
variation they explained in the simple models, and we
only retained those variables that were significant at
Po0.05 (Quinn & Keough 2002). The final model al-
lowed us to further investigate the research
hypotheses by identifying which factors affected the
strength of species–environment correlations once
other factors had been accounted for. Although
the response variable (AUC) was approximately
normally distributed, because it is truncated (ranges
0.5–1.0), the residuals of the regression model were
examined to ensure normality, e.g., that the assump-
tions of the linear model were met.

Results

AUCs were low (o0.7) for only six of the spe-
cies, and generally the SDMs were able to
distinguish species presence from absence based on
the environmental predictors used (Table 1; Appen-
dix S1). Residuals of the GLMs showed significant
autocorrelation in only seven of 45 cases (Appendix
S3). The non-parametric GAMs and decision trees
would be even less sensitive to the effects of spatial
autocorrelation. Fire disturbance response type ex-
plained more variation in AUC (R2 5 0.25) than any

Table 3. Simple regression models of SDM performance
(AUC is the response variable) as a function of each
predictor variable; R2 and P-values of the F-statistic for
each simple model. N5 (45 � 4) 180 models including
CTs, except ‘Model Type’ is without CT models
(N5 135). �The model including the quadratic term for
cover had a significantly better fit than the simple cover
model based on analysis of variance of these nested
models (F5 17.5; P5 5.2e-05)

Variable R2 P-value

Species 0.948 o0.001
Fire disturbance response type 0.253 o0.001
Longevity 0.186 o0.001
Cover 0.045 0.008
Cover 1 cover2� 0.148 o0.001
Dispersal 0.136 o0.001
Range 0.113 o0.001
Model type o0.001 0.865
Prevalence 0.035 0.017
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other variable (except when individual species are
considered; Table 3). Overall, the obligate seeder
shrub models performed best (Fig. 2a). However,
there was substantial variability within some fire
disturbance response types, especially herbaceous
perennials and post-fire seeding sub-shrubs.

The two species demographics traits that we
analyzed, longevity and dispersal mechanism, also
explained substantial variation in model accuracy
(R2 5 0.19 and R2 5 0.14, respectively). As pre-
dicted, there was a positive relationship between
AUC and longevity (Fig. 3a). With regard to dis-
persal mechanism, AUC was substantially higher
for ballistic dispersal than for the other types, and
the differences between vertebrate-dispersed, grav-
ity, and wind were minimal (Fig. 2b).

Of the range characteristics evaluated, species
cover (including a quadratic term) and range size ex-
plained more variation in AUC than prevalence
(R25 0.15 and 0.11, versus 0.03, respectively). The
relationship between species cover and AUC was
nonlinear (Table 3), so low cover had a positive in-
fluence on prediction accuracy up to a point at which
cover became negatively related to accuracy (Fig. 3b).

The range size of the species had an inverse relation-
ship with model performance: the mean AUC of
species with large range sizes was 0.75, whereas that
for models for small-range species was 0.83 (Fig. 2c).
AUC was weakly negatively related to species pre-
valence (Fig. 3c). Classification trees had low mean
prediction accuracy (AUC 0.69; Fig. 2d); when CTs
are ignored, there was no significant effect of model
type on accuracy, and the mean AUC for the other
three model types was almost the same (0.78–0.79).

Correlation analysis of the predictors indicated
that longevity (F5 24.0, Po0.001), prevalence
(F5 9.56; Po0.001), and dispersal mechanism (Chi-
square 5 129.8; Po0.001) differed significantly
among fire disturbance response types. Further, cov-
er, longevity, prevalence, and dispersal mechanism
were intercorrelated (details not shown). Therefore,
only the uncorrelated variables, fire disturbance re-
sponse, cover and its squared term, and range size,
were used in the multiple predictor model.

When all of the significant variables were en-
tered in a multiple regression, the model was highly
significant, with an adjusted R2 of 0.45. After
accounting for fire disturbance response type, cover

Fig. 2. Boxplots for 45 plant species and three model types showing: (a) AUC (prediction accuracy) versus disturbance re-
sponse type, shrFac 5 facultative seeder shrub; shrOS 5 obligate seeder shrub; shrOR 5 obligate resprouters shrub;
subFac 5 resprouting sub-shrub; sub S 5 post-fire seeding sub-shrub; Herb 5 perennial herb; (b) AUC versus dispersal
mechanism; (c) AUC versus range size; and d) AUC versus model type; GAM 5 generalized additive model; GLM 5

generalized linear model; RF 5 Random Forests; TREE 5 classification tree.
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and range size were still significant. Obligate seeding
shrubs and facultative seeding shrubs in particular
had higher AUC than other functional types.
Cover remained unimodally related to AUC, and
species with small ranges had higher AUC (details
in Appendix S4). Regression diagnostics showed
that the residuals of this model were approximately
normally distributed, with no indication of hetero-
scedasticity.

Discussion

The ability to model species–environment re-
lationships varied widely among species in this
study. The effect of individual species explained

95% of the variability in model prediction accuracy.
However, classifying species into fire disturbance
response types and exploring how accuracy varied
according to ecological and range characteristics
provided an understanding of why the species effect
was so strong. Fire disturbance response type ex-
plained prediction accuracy better than any other
variable (except species), supporting Hypothesis 1.
Therefore, just as the classification of species into
fire disturbance-related functional types has im-
proved the prediction of community composition in
dynamic landscapes (Pausas 1999), this kind of
classification may also provide a strong framework
for evaluating species–environment relationships
and evaluating model performance in SDM.

McGill et al. (2006) raised a challenge to link
species functional traits to their potential distribu-
tions on environmental gradients (their fundamental
niches), and then to examine how species with dif-
ferent traits interact along those gradients to
determine the realized niche. They proposed that
this approach will make community ecology a more
predictive science by identifying how communities
might respond to e.g. climate change depending on
whether species prefer distinct regions of niche space
(distinct preference) or whether species abundance is
controlled by trade-offs between dominance and
tolerance. Ackerly (2003) also presented a concep-
tual model linking distributions in the realized niche
to functional traits as a result of phenotypic plasti-
city, adaptive evolution, and ecological sorting.

Our study addressed, in a descriptive way, the link
between species disturbance response traits and the
predictability of the realized environmental niche.
Specifically, we examined those plant distur-
bance response types that define distinct strategies for
survival and reproduction in fire-prone ecosystems,
and which are defined by co-varying traits such as de-
gree of woodiness, longevity, refractory seeds, seed
dormancy, potential seed dispersal distance (dispersal
agents), resprouting ability, and shade tolerance.

As expected, the chaparral shrub fire dis-
turbance response types, those most dependent on
fire disturbance for reproduction, had the most pre-
dictable realized environmental niches. In parti-
cular, SDMs for the obligate and facultative seeders,
which both have fire-cued seed germination, are
poor long-distance dispersers, and rarely recruit in
the absence of fire, outperformed those for the
obligate resprouters that primarily regenerate vege-
tatively but can disperse seeds over long distances
and recruit from seeds between fire events. Because
of the higher frequency of sexual reproduction for
the seeders, these species have likely adapted their

Fig. 3. Scatterplot of AUC (prediction accuracy) versus
(a) species longevity; (b) percentage cover, and (c) pre-
valence for 45 plant species and three model types.
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physiological and anatomical tolerances to drought
and higher insolation than the resprouters (Keeley
1998); meaning they may have narrower environ-
mental tolerances and thus, greater predictability.
The seeders may also be poor competitors (Mahall
& Schlesinger 1982), as well as tolerant of a nar-
rower range of fire frequencies than the resprouters
(Syphard et al. 2006).

Fire disturbance response types whose distribu-
tions are more transient in the dynamic fire-prone
landscape, those that are early successional (shade
intolerant), shorter lived, and less woody, had less
predictable distributions than the chaparral shrubs
(supporting Hypothesis 1.2). Distribution of these
sub-shrubs and perennial herbs may have been less
predictable because they have less specialized en-
vironmental tolerances; however, another reason for
their poorer SDM performance is they may have
been less detectable during the vegetation survey.
Other studies have documented better SDM perfor-
mance for more detectable species (Seoane et al.
2005; Poyry et al. 2008).

Although fire disturbance response type ex-
plained the most variability in model accuracy,
longevity and seed dispersal mechanism were also
significant. We expected accuracy to be higher for
longer-lived species because they tend to persist in
suitable sites throughout their range and are thus
more detectable (Hypothesis 2.1), and we expected
that species with the shortest potential dispersal
distances (ballistic or gravity mechanisms) would
have the best model performance, presumably
due to better site persistence (Hypothesis 2.2). The
simple regression results confirmed our expec-
tations with longevity, and species with ballistic dis-
persal (the mechanism that typically results in
the shortest dispersal distances) performed much
better than those with other mechanisms, including
gravity.

One potential reason for the effect of ballistic
dispersal was that the only species that dispersed
through this mechanism were obligate seeders, and
the obligate seeders had better model performance
than the obligate resprouters. Both longevity and
seed dispersal mechanism were correlated with fire
disturbance response type, and they were not in-
cluded in the multiple regression model because
their effects would be accounted for in the fire dis-
turbance response classification. Thus, the signi-
ficance of fire disturbance response type suggests
that, at least in fire-prone regions, SDM perfor-
mance may be related to the way a suite of species
traits co-vary along environmental gradients. Such a
classification may therefore serve as a useful frame-

work for evaluating the effect of species on SDM
performance.

With regard to our second hypothesis, our re-
sults also supported our expectation that model
accuracy varied more as a function of species char-
acteristics than by model type (see also Guisan et al.
2007). Although accuracy varied somewhat among
model types, the only significant difference was that
classification tree models had lower accuracy than
the other three methods. CTs are considered to be
unstable, which is part of the reason for development
of ensemble methods like Random Forests (Breiman
2001), and have also been shown in other studies to
have lower prediction accuracy than GLMs, GAMs,
or ensemble tree methods (Thuiller et al. 2003; Moi-
sen et al. 2006). Although new developments in
modeling methods have been instrumental in advan-
cing the accuracy and ecological validity of SDMs,
our results suggest that the effect of species on model
accuracy will nevertheless override any improve-
ments due to modeling technique.

Although fire disturbance response explained
the most variation in prediction accuracy, the sig-
nificance of range size and cover in this study
suggest that a species geographical distribution, or
rarity, can affect the variability or noise in the data
used to build the models. In particular, if a species
has a limited set of environmental conditions in
which it can persist, and has a small range size, there
may be less variability in the environmental condi-
tions that characterize the presence observations.
Although range size is not a direct measure of spe-
cies environmental tolerance (Segurado & Araújo
2004; Elith et al. 2006), these factors tend to co-vary
(e.g., McPherson & Jetz 2007).

Because SDM has emphasized models that pre-
dict presence versus absence, the relative proportion
of such cases (the sample prevalence) has been
shown to affect the resulting models. Common spe-
cies usually have higher prevalence in a set of
observations, unless even sampling was deliberately
imposed, and therefore SDMs for these species have
more ‘false positive’ predictions or lower specificity
(Fielding & Bell 1997; Loiselle et al. 2008), while rare
species with low sample prevalence have more ‘false
negative’ predictions (Manel et al. 2001). While
sample prevalence has been shown to have little ef-
fect on threshold-independent measures of predic-
tion accuracy such as the AUC (Manel et al. 2001),
other studies have suggested that the effect of sam-
ple prevalence on model performance is an artifact
of sample evenness (McPherson et al. 2004). In this
study, sample prevalence had a slightly negative, but
not significant, effect. Therefore, the problem of
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uneven sample size (low prevalence) was not appar-
ent in our study.

Cover had a significant effect on model accu-
racy, but the relationship was quadratic, suggesting
that at least two factors were at play. At low values,
there was a positive relationship between cover and
prediction accuracy, which is likely because species
with very low abundance are less detectable. At
higher ranges of cover, however, the relationship
became negative, which is probably related to niche
breadth. Cover was also correlated with longevity,
dispersal mechanism, and prevalence, so in addition
to detectability and niche breadth, the effect of cover
may be a function of other variables as well.

In conclusion, SDM performance varied accord-
ing to multiple factors. It is very useful to consider the
relative importance of these factors when developing
SDMs for risk assessment or resource management.
While the nature of uncertainty and error in SDM is
ultimately determined bymodel objectives, our results
suggest that ecological and range characteristics of the
species have a greater effect on the strength of species–
environment relationships, and therefore the perfor-
mance of SDMs, than the choice of model method
(Barry & Elith 2006). In disturbance-prone ecosys-
tems (regardless of the type of disturbance), distur-
bance response classifications that incorporate a
range of species life history, life form, and disturbance
response strategies can help to provide a framework
for predicting which species will yield themost reliable
models of species environmental response.
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