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Abstract: Recent increases in destructive wildfires are driving a need for empirical research docu-
menting factors that contribute to structure loss. Existing studies show that fire risk is complex and
varies geographically, and the role of vegetation has been especially difficult to quantify. Here, we
evaluated the relative importance of vegetation cover at local (measured through the Normalized
Difference Vegetation Index) and landscape (as measured through the Wildland–Urban Interface)
scales in explaining structure loss from 2013 to 2018 in California—statewide and divided across
three regions. Generally, the pattern of housing relative to vegetation better explained structure loss
than local-scale vegetation amount, but the results varied regionally. This is likely because exposure
to fire is a necessary first condition for structure survival, and sensitivity is only relevant once the
fire reaches there. The relative importance of other factors such as long-term climatic variability,
distance to powerlines, and elevation also varied among regions. These suggest that effective fire risk
reduction strategies may need to account for multiple factors at multiple scales. The geographical
variability in results also reinforces the notion that “one size does not fit all”. Local-scale empirical
research on specific vegetation characteristics relative to structure loss is needed to inform the most
effective customized plan.

Keywords: fire risk; intermix; interface; vegetation pattern; scale; fire; fuel; housing density; land
use; land cover; defensible space

1. Introduction

In the last three out of four years, California has experienced record-setting wildfires
that have cumulatively added up to more than 50,000 structures destroyed. Although
California is arguably a worldwide leader in these types of catastrophic events, large-scale
human impacts from wildfires are also occurring more frequently in fire-prone ecosystems
across the world [1–3] with the 2019–2020 bushfire season in Australia being of notable
impact. As losses accrue, the urgency of understanding the factors influencing structure
loss is growing. Hence, scientific study of structure loss in wildfire—and why it occurs—is
starting to mature. One of the most important overall conclusions resulting from this
research is that structure loss is a complex function of multiple interacting factors that
vary geographically [4–6], and that much more work is needed to parse out the relative
importance of different factors at different scales.

One of the factors that has been difficult to quantify empirically is the role of vegetation
surrounding structures and in surrounding landscapes. Defensible space—the reduction of
woody vegetation within a buffer surrounding the structure—is widely advocated for its
potential to minimize structure loss. Although few studies have been conducted to evaluate
its role empirically, its beneficial effects on reducing fire risk have been demonstrated via
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simulation or theoretical modeling studies, field experiments, and case studies of individual
fire events [7–11].

Two empirical studies in Southern California found a significant benefit of the State-
mandated 100’ defensible space guideline in reducing house losses [12,13]. In both studies,
the most significant effect was observed for vegetation reduction approximately 5–20 m
from a structure, after which the protective effect of fuel treatments farther away was
not evident. A remote sensing study in Colorado and an analysis of structures lost in
27 fires in Australia also found the most protective benefit of reduced vegetation was in the
area immediately surrounding structures [14,15]. In a coarser-scale analysis in Australia,
defensible space closest to the structure (i.e., within the first 40 m) was significantly more
important than vegetation cover at farther distances [16]. However, vegetation arrangement
and fuel moisture could provide the same protective benefit as removing trees and shrubs
40 m around the structure [17].

Although these modeling and empirical studies collectively suggest that reducing
vegetation cover close to the structure can minimize the potential for structure loss, broad
conclusions remain difficult to assess because the studies were conducted at different scales
of analysis using different measurements and were restricted to the unique geographies of
the study regions. In addition, the relative importance of defensible space compared to
other factors remains unclear, although some studies suggest its relative importance varies
based on location, housing pattern, structural characteristics, and scale [11,12,18].

In a statewide and regional-scale analysis using building inspectors’ data, Syphard and
Keeley [18] found evidence to suggest that structural characteristics were more significantly
associated with structure survival than defensible space. In that work, however, defensible
space distance may have been unreliably assessed because of the uncertainty in quantifying
vegetation in a post fire environment. It is also possible that both surviving and destroyed
homes had the same amount of defensible space, so it did not come out as a significant
factor. In Southern California, Syphard et al. [12] found that housing arrangement and
pattern were more influential than defensible space for explaining structure loss. This
result is consistent with other studies that have more broadly revealed housing pattern and
topographic variables to be more influential in explaining structure loss than vegetation
amount and configuration [6,19] or other proxies for vegetation [4].

An important consideration when examining the factors associated with structure
loss in wildfires is that vulnerability to a hazard is a combination of both exposure and
sensitivity to the hazard [20]. Exposure means that the geographical location of an asset at
risk (e.g., housing pattern and location) can predict its chance of encountering a hazard
to begin with; and sensitivity means that, once the hazard is present, the potential for
damage is related to local-scale, intrinsic characteristics (e.g., defensible space and structural
characteristics). Given that most structures are lost to either direct ember attack, or to
the ignition of surrounding elements from ember attack [21], both defensible space and
structural characteristics minimize sensitivity by either preventing ember entry to the
structure or reducing the flammability of whatever an ember lands upon. Thus, risk of
structure loss to wildfires operates at different scales and the role of vegetation may also
operate at different scales.

One of the most widely recognized indicators of exposure to wildfire is the wildland–
urban interface (WUI [22,23]), which is where human communities are close to natural
wildlands. Recent work has confirmed expectations that structure loss is significantly
higher in the WUI than in non-WUI areas [24,25]. Although the definition and spatial
delineation of the WUI varies widely [26], and may even explicitly account for wildfire
probability [27], the most widely used definition and mapping rules are based on the US
Federal Register, with two distinct types of WUI defined along with other map classes for
varying degrees of development density and vegetation [22,23]. The difference between the
two WUI types is the relative housing density and percentage cover of wildland vegetation.

The relationship between the WUI and structure loss is an example of how vegetation
can influence fire risk at multiple scales. At a landscape scale, vegetation reflects exposure
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to the hazard. Wildfire behavior is obviously a function of vegetation amount and con-
figuration, which in turn mediates the potential for wildfire to reach a structure. At the
local scale, vegetation plays a role in the structures’ sensitivity to the hazard, with different
features of the vegetation becoming more important than others.

In this study, we evaluate the relative importance of vegetation cover at local and
landscape scales in explaining structure loss from 2013 to 2018 in California—statewide and
separately for three of the most fire-prone regions. We compared vegetation metrics along
with several human and biophysical variables associated with structure loss at the locations
of destroyed and unburned structures within fire perimeters to assess their relative role.

We ask:

(1) Is vegetation cover substantially greater at locations of destroyed structures than
unburned structures? Does this effect vary by region or distance?

(2) What is the relative importance of vegetation calculated at local and landscape scales
in relation to other factors previously associated with structure loss?

(3) Does structure loss vary across different classes of the wildland–urban interface?
(4) Do these relationships vary by geographical region within California?

2. Materials and Methods
2.1. Structure Locations and Study Regions

We acquired the locations of destroyed structures via a public records request to Cal
Fire, and divided them into three regions as in Syphard and Keeley [18] (Figure 1). These
included the central and northern coast areas surrounding San Francisco Bay (“Bay Area”),
the regions surrounding the northern cismontane Sierra Nevada (“North Interior”), and
the region comprising coastal counties south of San Luis Obispo (“Southern California”).
To derive data for unburned structures, we placed a point within the centroid of building
polygons that overlaid fire perimeters using the open-access Microsoft Building Footprint
dataset (https://www.microsoft.com/en-us/maps/building-footprints). For fire perime-
ters, we used the State of California Fire and Resource Assessment Program (FRAP) fire
perimeter data from 2013 to 2018 (https://frap.fire.ca.gov/frap-projects/fire-perimeters/).
After combining the unburned points with locations of destroyed structures within fires,
we took a random sample of the data with a minimum of 500-m distance between points to
reduce potential for statistical bias due to overlapping buffers.

2.2. Variables

To measure defensible space in previous studies, researchers have used fine-scale
aerial photography to calculate the range of metrics that collectively define the legal defi-
nition of defensible space in California [12,13]. Calculating these types of measurements
for large numbers across broad scales, however, would be prohibitively time-consuming.
Alternatively, remotely sensed satellite imagery can provide unbiased calculations of vege-
tation biomass that was present before the fire (e.g., [14,16,28]). Here, we calculated the
mean annual maximum Normalized Difference Vegetation Index (NDVI) values within
three concentric circles around structures, averaged for the two years prior to the fire.
Using the annual maximum NDVI and averaging across the two years prior to fire min-
imized potential uncertainties relative to fine-scale temporal fluctuation from weather
variables [29]. We used NDVI data calculated from Landsat remote sensing products, at
30 m spatial resolution, provided by climateengine.org/data. To evaluate whether the
distance of measurement differentially influences structure loss, we compared NDVI values
from concentric circles surrounding the structure at three distances—30, 90, and 300 m
(Table 1). We included all cells overlapping the concentric circles in our calculation of mean
NDVI. Due to the resolution of the satellite data, we did not calculate distances shorter
than 30 m.

https://www.microsoft.com/en-us/maps/building-footprints
https://frap.fire.ca.gov/frap-projects/fire-perimeters/
climateengine.org/data
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Figure 1. Study area illustrating three California regions: the Bay Area (northwest), the North Interior
(northeast), and Southern California (south). The WUI classes in (a) depict Interface WUI (red),
Intermix WUI (orange), Unvegetated (gray), and Low-density vegetated (green). The fires included
in the study (red perimeters) and location of destroyed structures (black) are shown in (b). Hillshade
basemap from ArcGIS Online (https://www.arcgis.com/index.html).

To represent landscape-level vegetation pattern, we used a landscape pattern metric to
calculate the proportion of highly flammable vegetation within a circular moving window
at a 2.5 km radius (the approximate distance the wind may carry an ember [8]) around all
structures (as in Alexandre et al. [19]), using Fragstats v4.2.1 [30]. For this variable, we
used the U.S. Geological Survey National Land Database (NLCD, mrlc.gov) from 2016 to
create a binary class of flammable versus non-flammable vegetation, grouping together
grass, shrubs, and trees into flammable vegetation.

The variable that represents the landscape-level pattern of houses and vegetation
together is the WUI. For each structure, we used the 2010 WUI map created by Rade-
loff et al. [23] to extract the corresponding WUI class in which it was located. Intermix
WUI is defined as areas in census blocks that have ≥6.18 houses per km2 and ≥50 percent
cover of wildland vegetation. Interface WUI is defined as areas with ≥6.18 houses per km2

with large areas (at least 5 km2) of at least 75% vegetation within 2.4 km. In addition to
Intermix and Interface WUI, we grouped unvegetated classes together (including inhabited
and uninhabited areas at different housing densities) and areas that were vegetated, either
uninhabited or inhabited, but with housing density lower than 6.18 structures km2.

https://www.arcgis.com/index.html
mrlc.gov
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Table 1. Name and description of explanatory variables used to explain structure loss in California.

Variable Name Definition Source Resolution

Climate
Actual

evapotranspiration
(AET)

Average AET (Water available between wilting point
and field capacity; mm), 1981–2020 Flint and Flint [31] 270 m

MaxTemp Average Maximum Monthly Temperature (deg. C),
Annual, 1981–2010 Flint and Flint [31] 270 m

Topography Elevation Elevation (m) U.S. Geological Survey 30 m

Topographic
heterogeneity

The range in elevation values from a center cell and
the three-cell radius immediately surrounding it

using a digital elevation model. Values were
converted to a 0–1 scale using the standard deviation.

NatureServe
(https://databasin.org) 90 m

Human Dist_powerline Euclidean distance from electric transmission lines
(status = operational AND type = OH; m)

California Energy
Commission 30 m

Dist_rd Euclidean distance from roads (excluding 4WD and
OHV; m)

TIGER/Line 2016
(www.census.gov) 30 m

Vegetation

NDVI_30 Mean NDVI max averaged for 1 and 2 years before
fire across 30 m buffer around structure

Climate Engine
(http:

//climateengine.org/)
30 m

NDVI_90 Mean NDVI max averaged for 1 and 2 years before
fire across 90 m buffer around structure

Climate Engine
(http:

//climateengine.org/)
30 m

NDVI_300 Mean NDVI max averaged for 1 and 2 years before
fire across 300 m buffer around structure

Climate Engine
(http:

//climateengine.org/)
30 m

Flammable veg in
2.5 km

Proportion highly flammable vegetation (grass, trees,
and shrubs) across circular moving window with

2.5 km radius

NLCD 2016 Land Cover
www.mrlc.gov 30 m

Vegetation and
human WUI Class Intermix, Interface, Unvegetated;

Low-density vegetated Radeloff et al. [23]
Polygon

converted to
30 m grid

In addition to the vegetation-related variables, we explored other biophysical and
human factors as potential predictors (Table 1). Given their demonstrated overall relation-
ship with the spatial distribution of fire probability [4,32–34], we considered two long-term
climate variables—average maximum monthly temperature from 1981 to 2010 and average
actual evapotranspiration (AET), a measure of the water available between wilting point
and field capacity (mm), 1981–2010. We also included two topographic variables, which
mediate fire behavior and vegetation properties: elevation and topographic heterogeneity.
The elevation grid was provided by LANDFIRE (landfire.gov/elevation.php) at 30 m
resolution and the topographic heterogeneity index was calculated from a 90 m digital
elevation model (DEM) to capture surrounding diversity in terrain (https://databasin.org/
datasets/1f86100938b544a3b6361eee6ac05945/). Finally, we included two anthropogenic
variables to assess their relative influence on structure loss. These included distance to
roads, which can serve as a proxy for firefighter access, derived using the 2015 TIGER
Roads data, U.S. Dept. of Commerce, U.S. Census Bureau (www.census.gov), and distance
from electric transmission line, with data provided by the California Energy Commission,
Electric Transmission Lines (https://cecgis-caenergy.opendata.arcgis.com/datasets/260b4
513acdb4a3a8e4d64e69fc84fee_0). We also included distance to powerline because several
of the recent destructive fires were ignited by powerlines. As the building characteristics
provided by Cal Fire for destroyed structures were not available for the unburned homes
within the fire perimeter, we did not incorporate these into our analysis, as these numbers
are available in Syphard and Keeley [18].

2.3. Analysis

Statewide and for the three regions, we summarized and compared the average NDVI
within the buffer distances around destroyed and unburned structures. Although we
used the spatially filtered data to ensure more robust statistical analysis, we assembled
these summary statistics for the full dataset to reflect the full population. We additionally

https://databasin.org
www.census.gov
http://climateengine.org/
http://climateengine.org/
http://climateengine.org/
http://climateengine.org/
http://climateengine.org/
http://climateengine.org/
www.mrlc.gov
landfire.gov/elevation.php
https://databasin.org/datasets/1f86100938b544a3b6361eee6ac05945/
https://databasin.org/datasets/1f86100938b544a3b6361eee6ac05945/
www.census.gov
https://cecgis-caenergy.opendata.arcgis.com/datasets/260b4513acdb4a3a8e4d64e69fc84fee_0
https://cecgis-caenergy.opendata.arcgis.com/datasets/260b4513acdb4a3a8e4d64e69fc84fee_0
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summarized all point data for destroyed and unburned structures according to their
WUI classification.

To quantify the relative importance of the explanatory variables, we developed gener-
alized linear regression models (GLMs) [35] for single predictor variables using a logit link
and a binomial response, i.e., destroyed versus unburned structures, as in Syphard and
Keeley [18]. We then calculated the deviance explained (D2) for each variable, a compa-
rable metric to R-squared in linear regression. Given that the WUI data were presented
in different classes, we also calculated the relative risk (RR) [36] among all class pairs
to determine if there were significant differences in risk and to identify which classes
were most strongly associated with destroyed structures. The RR is based on the ratio of
pairwise class proportions (i.e., destroyed versus unburned structures in each WUI class)
and identifies whether classes have the same risk (a value of 1), or if one class has a higher
(values > 1) or lower (values < 1) risk compared to another.

We developed statewide and regional multivariate classification trees using the RPART
package (https://cran.r-project.org/web/packages/rpart/rpart.pdf) in RStudio version
1.1463 (rstudio.com) to assess the relative importance of variables in terms of how well
they split the data between destroyed and unburned structures. Classification trees are also
useful for illustrating variable effects and interactions in a multi-variate environment [37].
Given the large number of potential predictor variables, we only performed this analysis
statewide to ensure sufficient sample size. There was a strong correlation (r > 0.7) between
the NDVI measurements in different buffer sizes, so we only evaluated NDVI at the
30 m buffer distance, as that was the measurement with the largest difference between
destroyed and unburned structures. Additionally, elevation was correlated with mean
annual temperature (r = −0.8), so we removed that variable because temperature is a more
direct measurement of the spatial distribution of climatic variability. There were no other
high correlations among explanatory variables. Thus, the variables that we included in the
tree were: NDVI, topographic heterogeneity, distance to roads, distance to powerlines, WUI
class, mean annual maximum temperature, mean actual evapotranspiration, and vegetation
within 2.5 km. We pruned the trees using the complexity parameter that best minimized
overfitting with the smallest cross-validated error and calculated model performance of
the training data using the area under the curve (AUC) for receiver operating characteristic
plots (ROC) [38].

3. Results

The comparison of destroyed versus unburned structures did not reveal a strong
influence of surrounding vegetation as measured through NDVI statewide or in the Bay
Area (Figures 2 and 3). There, and in Southern CA where the differences were larger, the
NDVI was greater for destroyed structures than unburned structures at all three buffer
distances. However, the differences among buffer distances were minimal, with a larger
separation of destroyed and unburned structures at 30 m than the other two distances. In
the North Interior region, the relationship was inverse in that there was greater NDVI in
unburned than destroyed structures at all three buffer distances (Figure 2).

The ranking of the deviance explained for surrounding vegetation compared to other
explanatory variables was low statewide and in all regions except for Southern CA, where
the deviance explained for NDVI in the 30-m buffer was the top-ranking explanatory
variable (Figure 3). In all cases, the amount of vegetation within 30 m was relatively more
important than that in 90 or 300 m. The broader metric of vegetation, at 2.5 km, explained
more than NDVI statewide and in the North Interior.

Vegetation pattern combined with housing pattern—as measured through the WUI—
was consistently more important than the other vegetation-related variables, and it was
one of the top two ranking variables for all analyses in all regions (Figure 3). The ranking
of the non-vegetation variables varied from region to region, although elevation was one
of the top two variables along with WUI class statewide (Figure 3). Otherwise, distance to
powerline was one of the top two variables in the Bay Area, maximum average temperature

https://cran.r-project.org/web/packages/rpart/rpart.pdf
rstudio.com
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was the highest-ranking variable in the North Interior, and NDVI at 30 m was one of the
top two variables in Southern California.
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Figure 3. Percentage deviance explained for unburned versus destroyed structures in binomial
regression models statewide and for three regions in California. The numbers following “NDVI”
represent the buffer distance surrounding structures for which the Normalized Difference Vegetation
Index (NDVI) was calculated.

Of the four WUI classes evaluated, the Intermix WUI and Low-density vegetated
classes were the most common for all structures in the analysis (Figure 4). Most of the
unburned structures were distributed in the Low-density vegetated class while most of the
destroyed structures were distributed within the Intermix WUI class. The RR assessment
within different WUI classes showed that the Intermix WUI had disproportionately larger
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numbers of destroyed structures than the three other classes statewide (RR = 1.15–2.5) and
in all three regions (RR = 1.14–1.95), except for the Bay Area (RR = 0.93) and the North
Interior (RR = 0.89) study areas, where there were disproportionately fewer destroyed struc-
tures in the Intermix versus the Interface WUI classes (Table 2). Although all comparisons
at the statewide scale were significant, the Intermix versus Interface comparisons were not
significant for the three regions separately or for the Intermix versus Unvegetated class in
the Bay Area. Among other classes, Interface WUI generally had disproportionately more
destroyed structures than the two non-WUI classes, unvegetated and low-density vege-
tated (RR = 1.29–4.64). The vegetated class had consistently lower RR than the unvegetated
class (RR = 0.5–0.79).
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Figure 4. Proportion of unburned and destroyed structures distributed among four Wildland–Urban Interface cover classes
statewide and in three regions of California.

Table 2. Relative risk (RR) among WUI classes statewide and for three California regions. In the class comparisons, an
RR > 1 means the first class listed had disproportionately more destroyed than unburned structures; < 1 means the first
class listed had disproportionately fewer destroyed than unburned structures; and 1 means no difference between the
two classes.

Statewide p-Value Bay
Area p-Value North

Interior p-Value Southern p-Value
CA

Intermix vs. Interface 1.22 <0.001 0.93 0.4 0.89 0.25 1.14 0.2
Intermix vs. Unvegetated 1.15 <0.001 1.17 0.31 1.17 0.01 1.55 0.009

Intermix vs. Low-density vegetated 2.25 <0.001 1.66 <0.001 4.14 <0.001 1.95 <0.001
Interface vs. Unvegetated 0.96 0.004 1.29 0.19 2.34 0.006 1.34 0.11

Interface vs. Low-density vegetated 1.85 <0.001 1.78 <0.001 4.64 <0.001 1.7 <0.001
Vegetated vs. Unvegetated 0.51 <0.001 0.71 0.03 0.5 0.02 0.79 0.177
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The classification trees showed that statewide, the WUI was the most influential factor
separating destroyed from unburned structures (Figure 5), and in this case, the two WUI
types, Intermix and Interface, were two types associated with destroyed versus unburned
structures. The second split in the data was NDVI within a 30-m buffer, with destroyed
structures tending to occur above a threshold of 0.49. The last variable selected in the tree
was mean annual maximum temperature, with destroyed structures tending to occur in
areas that average between 20 and 23 degrees Celsius. The AUC for this tree was 0.68.
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The separate classification trees for each region showed variability in the factors that
best separated the destroyed from unburned structures (Figure 5). In all cases except
Southern CA, landscape-scale factors related to spatial distribution and exposure were
responsible for the first split in the data, and WUI was the second split in the data, followed
by other variables. For the North Interior region, the first split was maximum average tem-
perature, followed by WUI class—again with Interface and Intermix separating destroyed
from unburned structures, and mean actual evapotranspiration. The training AUC for the
tree in this region was 0.84. In the Bay Area, the first split was distance to powerline fol-
lowed by WUI class in which Interface, Intermix, and Unvegetated were grouped together
as those best separating destroyed from unburned structures. Depending on which WUI
class the structure belonged, the final splits were for mean annual maximum temperature
and distance to road or NDVI. The AUC for the Bay Area tree was 0.70. In Southern Cali-
fornia, the first split in the data was the amount of vegetation within 30 m of the structure,
with an NDVI of >= 0.49 being the threshold. In this region, the WUI was the second most
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important split, followed by distance to powerline and mean annual evapotranspiration,
again with Unvegetated combined with Intermix and Interface defining the split in data.
The AUC for this tree was 0.69.

4. Discussion

Vegetation is the primary means by which wildfire propagates; is something that
can be managed; and thus, is often considered key among strategies to reduce wildfire
risk. Yet, the relationship between vegetation and structure loss is complex, and this study
underlines the fact that vegetation has different relationships with fire risk at different scales,
representing different operative mechanisms. These relationships also vary in relative effect
depending upon geographical region. Overall, landscape-level vegetation and housing
pattern provided better separability of unburned and destroyed structures across the state
than local-scale vegetation amount. None of the variables analyzed, however, had deviance
explained higher than 25%, which reaffirms the notion that structure loss is a function of
multiple factors interacting simultaneously, including factors not explored here.

Although multiple definitions of the WUI have been proposed and incorporated into
policy, even explicitly accounting for fire risk [27], the underlying conceptual premise for
most definitions that focus on fire is that risk and ignitions are likely to be higher where
houses meet or intermingle with vegetation [23,39–42]. Thus, the two conditions that must
be present are vegetation and housing, with different classes of WUI defined based on
variations in housing density and vegetation cover.

In previous studies examining structure loss probability, housing location and pat-
tern have consistently been found to be top-ranked among a wide range of explanatory
variables [4,6,19,43]. Although the specific structural pattern and housing density where
risk is highest vary geographically [4,6,19], lower-density housing at a landscape scale has
been the most consistent housing pattern with the highest risk. The reason for the strong
significance of housing variables, particularly ones that reflect dispersed or low-density
housing, is that they represent high exposure to wildfire, which is the first condition that
must be met for structure loss to occur [5,20]. If a fire does not reach a structure, the other
factors become irrelevant.

A primary reason explaining why low- to intermediate-density housing is so strongly
tied to fire risk is because these are the houses most likely to be adjacent to flammable wild-
land vegetation—and this is what creates the exposure. This is also the reason that the WUI
as defined here is so strongly associated with fire risk [23]—because it is a measurement
that combines housing with adjacency and distance to wildland vegetation [44]. The WUI
definition incorporates a measurement of vegetation out to 2.4 km, and this variable was
more influential than our measurement of vegetation to 2.5 km, which suggests it is the
specific pattern of houses and vegetation that matter most—more than vegetation by itself.

In this study, the largest proportion of destroyed structures was in the Intermix WUI
class, followed by the non-WUI, low-density, vegetated class. Intermix also had the highest
RR compared to Interface and non-WUI classes statewide. Regionally, however, the relative
ranking between Intermix and Interface varied, and the differences were non-significant.
Both Intermix and Interface WUI had higher RRs than the other two non-WUI classes
across all regions.

This finding, that WUI classes have disproportionately higher fire risk than non-
WUI classes, and that relationships vary by region and scale, has been observed in other
empirical studies. Kramer et al. [24] found that, across the United States, the majority of
destroyed and threatened structures were within areas designated as WUI, but a large
proportion of destroyed structures were also in non-WUI areas with housing density
that was too low to meet the definition of WUI defined here. Ciggiano et al. [44] also
found that most buildings lost in recent fires across the US from 2000 to 2018 were within
WUI-designated areas. Furthermore, all destroyed structures in their study were close to
wildland vegetation (from 100 to 850 m), and more burned buildings were in the Intermix
rather than the Interface. On the other hand, Kramer et al. [25] found that from 1985 to 2013



Fire 2021, 4, 12 11 of 15

in California, more structures were destroyed in Interface rather than Intermix WUI; that is,
in areas with less wildland vegetation. This empirical research on WUI types is generally
consistent with the finding that low-intermediate housing density is where most structures
are destroyed [4,43]; but clearly there are regional, and perhaps temporal, differences in
the relative importance of the predominant type of WUI.

The geographical differences in the relative housing density or type of WUI where
structure loss is most likely to occur likely reflects the influence of other factors that combine
to contribute to structure loss probability, and the fact that fires tend to be idiosyncratic. For
example, in several recent California fires, the role of winds and structural characteristics
of buildings were clearly dominant factors. While the average structure density where
structures were lost fires was low, there were also portions of the fires evaluated here in
which significant structure-to-structure spread occurred throughout high-density housing.
High housing density that facilitates structure-to-structure spread has been observed in
other fires with large numbers of destroyed buildings [10,45], in part because certain
structural features and surrounding materials can facilitate fire spread [46].

The difference between a structure surviving and being destroyed could also be due to
factors that have yet to be quantified, such as firefighter presence or serendipitous factors
such as a sudden shift in wind velocity or direction. The scale of measurement can also
affect the relative importance of different housing and vegetation patterns [11]. Different
regions have different baseline housing densities with unique arrangements of housing
interspersed with vegetation. Empirical studies have also been conducted at different
spatial scales, where the average housing density may vary with the overall range and
variation of the structures in the sample.

Comparison of destroyed with unburned structures may also yield different results
depending upon whether the unburned structures are within fire perimeters as they are in
this study. That is, if housing density and the WUI are indices of exposure to fire, houses
in the perimeter are already biased in that they have been exposed. This is likely why the
second most common WUI class in this study was non-WUI low-density vegetated housing.

This study also shows that structure exposure to wildfire can be a function of other
sources of spatial variation across a landscape. Depending upon the region, factors such as
elevation, climatic variation as measured by maximum annual temperature, and distance
to powerline were similar in variable importance to WUI class. These factors illustrate
how parts of some landscapes are more fire-prone than others, and that structure loss
tends to occur in the most fire-prone facets of a landscape. For example, the importance of
temperature in the North Interior likely reflects how climatic variation is a strong driver of
fire activity in this region of California [47], and structures were destroyed more often in
areas with hotter temperatures. Given that the most destructive fires in the Bay Area were
caused by powerline ignitions, spatial proximity to powerline was a strong separator of
unburned and destroyed structures in that region. In Southern CA, distance to powerline
was one of the lower-ranking variables included in the classification tree, and the direction
of the relationship was counter-intuitive. This may reflect the lower number of destructive
powerline-ignited fires during the study period here; it may also reveal an interaction with
the higher-ranking variables in the tree, suggesting powerline proximity is serving as a
proxy for something else. As the definition of WUI used here is a function of housing and
vegetation alone, other approaches that additionally account for variation in fire risk [27] or
that are scaled for specific geographies [44] may be even more useful for planning purposes.

The one region in which local-scale vegetation amount explained structure loss better
than landscape-scale vegetation pattern (i.e., the WUI) was Southern CA. The classification
tree showed that NDVI at 30 m was the first split in the classification tree, followed by the
WUI. This result is somewhat surprising because Southern CA has the largest extent of
WUI of the three regions. Additionally, in Southern CA, housing density was found to
explain more variation in structure loss than other factors, including defensible space [48].
However, it may be that the extensive nature of WUI in the region may partly explain
why it was second in importance to local-scale vegetation. Here and in the Bay area,
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unvegetated areas (largely urban) were included with the WUI class in the first split of
the classification tree, suggesting that these fires were all at least partially surrounded by
high-density development, and there may not be much variability in the spatial pattern of
development where the fires in this study occurred. It may also suggest structures with
large amounts of exotic landscaping in urban areas are most at risk in this region.

The use of NDVI to measure local vegetation amount was appropriate for a broad-
scale study such as this, to rank the relative importance of factors across large regions;
and while NDVI captures vegetation abundance, it cannot distinguish vegetation type,
condition, or structure, all of which are important for fire behavior [49]. NDVI also cannot
indicate where abundance is high within a 30 m grid cell. The empirical studies evaluating
the role of defensible space in this region used a wide range of factors to quantify defensible
space at scales much finer than 30 m [12,13], and these studies found that the most effective
distance of defensible space is shorter than 30 m, particularly when vegetation is touching
or overhanging a structure.

That vegetation is most important closer to the house may be seen in this study in
that the deviance explained was smaller for larger buffer distances; however, given the
low overall deviance explained, further analysis is needed. A regional study exploring
four of the fires included in the two northern regions of our analysis also found that
vegetation cover near the structure, as measured by NDVI within a 25 m buffer, was an
important predictor of structure loss. However, wind speed dampened the relationship to
the point that all vegetation classes in that study had loss rates above 80% [50]. Syphard and
Keeley [18] found that defensible space distance was much less important than structural
characteristics and speculated that this result might be because the distances measured
were not at fine enough scales to capture the importance of vegetation close to the structure.
Another important component of defensible space is irrigation and vegetation moisture.
Gibbons et al. [17] found that irrigation and vegetation arrangement can be just as effective
as minimizing vegetation amount. This is likely because wind-borne embers are more
likely to be extinguished if they land on something with high fuel moisture.

Although we did not repeat the analysis here, Syphard and Keeley [18] found that
structural characteristics play an important role in protecting structures once a fire reaches
there. This may also reflect how preventing ember entry to the building may be one
of the most significant factors in increasing probability of survival. In that study and
this one, none of the factors we evaluated explained a substantial amount of variation in
destroyed structures.

The low deviance explained may be due to uncertainty introduced with spatial data
or a low overall variability in our spatial data. As all structures in our analysis had been,
to some extent, exposed to a fire, the measurements of exposure used here, such as the
WUI, distance to roads, or broad climatic variation, are only able to explain the difference
between degrees of exposure. The reason for this restriction was that we could not compare
pre-fire NDVI with structures that did not have a fire. Nevertheless, given the many large
fires in this study, factors such as distance to powerline or road, or the distance to the
ignition location, can still vary significantly across the dataset. We are unsure why the
deviance explained was higher overall for the North Interior region, but it may reflect a
higher vegetation heterogeneity in the fire perimeters than the other regions, given that
conifer forest is more prevalent here. The low deviance overall also suggests, as mentioned
previously, that a range of other characteristics play into the ultimate outcome of a fire
event. Thus, this research illustrates differences in the relative importance of the variables
analyzed, but additional work and more extensive empirical research will be needed to
obtain a full understanding of why some structures are destroyed in fires and others are not.

5. Conclusions

There are multiple ways that vegetation can influence fire risk. At broad scales,
vegetation pattern is an important determinant of exposure. At finer scales, vegetation
affects sensitivity to the hazard and mediates fire behavior through fuel load (i.e., amount)
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or fuel moisture and flammability [20]. Our comparison of vegetation pattern and amount
generally identified the pattern of vegetation and housing to better explain structure loss
than local-scale vegetation amount. This is likely because exposure to fire is a necessary
first condition determining structure survival, and sensitivity is only relevant once the fire
reaches a structure. This finding could help develop the ranking of regions for focus of fire
management efforts. These results also suggest that the most effective fire risk reduction
approach will account for multiple factors at multiple scales and will incorporate multiple
simultaneous strategies. The widespread geographical variability in results reinforces the
notion that “one size does not fit all”. Our study indicates that effective fire management
plans will need additional customized, local-scale empirical research on specific vegetation
characteristics relative to structure loss.
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