
Uncertainty in assessing the impacts of global change
with coupled dynamic species distribution and
population models
ER IN CONL I SK * , ALEXANDRA D . SYPHARD † , J ANET FRANKL IN ‡ , LORRA INE FL INT § ,
ALAN FL INT ¶ and HELEN REGAN**

*Department of Biology, Center for Conservation Biology, University of California, 900 University Ave, Riverside, CA 92521,

USA, †Conservation Biology Institute, 10423 Sierra Vista Ave., La Mesa, CA 91941, USA, ‡School of Geographical Sciences and

Urban Planning, Arizona State University, Tempe, AZ 85287-5302, USA, §USGS California Water Science Center, 6000 J Street,

Sacramento, CA 95819, USA, ¶USGS California Water Science Center, 6000 J Street, Sacramento, CA 95819, USA,

**Department of Biology, University of California, 900 University Ave, Riverside, CA 92521, USA

Abstract

Concern over rapid global changes and the potential for interactions among multiple threats are prompting scientists

to combine multiple modelling approaches to understand impacts on biodiversity. A relatively recent development is

the combination of species distribution models, land-use change predictions, and dynamic population models to pre-

dict the relative and combined impacts of climate change, land-use change, and altered disturbance regimes on spe-

cies’ extinction risk. Each modelling component introduces its own source of uncertainty through different

parameters and assumptions, which, when combined, can result in compounded uncertainty that can have major

implications for management. Although some uncertainty analyses have been conducted separately on various model

components – such as climate predictions, species distribution models, land-use change predictions, and population

models – a unified sensitivity analysis comparing various sources of uncertainty in combined modelling approaches

is needed to identify the most influential and problematic assumptions. We estimated the sensitivities of long-run

population predictions to different ecological assumptions and parameter settings for a rare and endangered annual

plant species (Acanthomintha ilicifolia, or San Diego thornmint). Uncertainty about habitat suitability predictions, due

to the choice of species distribution model, contributed most to variation in predictions about long-run populations.
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Introduction

Species distribution models (SDMs), also called habitat

suitability or niche models, are widely used to predict

the impact of climate change on species. SDMs predict

suitable habitat as a function of environmental vari-

ables (Franklin, 2010). However, SDMs do not model

populations or their determinants (such as fertility,

migration, species interactions, disturbance regimes)

beyond habitat suitability. To improve predictions of

ecosystem change, coupled models (also called hybrid

models) are being developed that integrate SDMs with

population models (Keith et al., 2008; Anderson et al.,

2009; Lawson et al., 2010; Regan et al., 2011; Conlisk

et al., 2012; Dullinger et al., 2012; Fordham et al., 2012a,

b). This approach promises better prediction of the

impacts of climate change and related threats to species

populations because it considers a wide range of eco-

logical mechanisms simultaneously.

Conservation managers can use these models to

assess the impacts of different threats and to rank the

importance of different management strategies (Thuil-

ler et al., 2008; Gallien et al., 2010; Midgley et al., 2010).

For example, the impact of climate change on habitat

suitability can be compared with stressors that act on

populations, such as altered fire regimes, spread of exo-

tic competitors, and land-use change. However, cou-

pled models rely on a wide range of data sources and

model choices, leading to questions about reliability in

the face of compounding uncertainty (Langford et al.,

2011). For a coupled model to be an effective manage-

ment tool, the relative importance of different manage-

ment options should be robust to model structure and

parameterization. As the coupled modelling approach

gains traction, exploring model sensitivities to various
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model components can provide insights about where

the greatest uncertainties lie and about the robustness

of decisions informed by the models.

The five main forecasting components in a coupled

SDM–population model typically include: (i) climate

forecast selection, (ii) choice of SDM, (iii) if and how

future land-use change is included, (iv) representation

of threats to a population, such as predicted fire return

interval, and (v) type of population model and how it is

parameterized. Each of these components alone has

inherent uncertainty.

Under the A2 (‘business as usual’) greenhouse gas

emissions scenario, the best estimate of globally aver-

aged future temperature increase is 3.4 °C in the next

100 years, but the projected increase among different

climate models ranges from 2 to 5.4 °C (IPCC, 2007).

This level of temperature uncertainty is small com-

pared with the level of uncertainty in precipitation pre-

dictions across the various global climate models

(Murphy et al., 2004). Climate predictions serve as

input in SDMs used to predict the impact of climate

change on the distribution of suitable habitat. Given a

specific climate scenario, the choice of SDM can lead to

very different suitability predictions. Numerous studies

have examined uncertainty in predicted species ranges

using different types of SDMs, climate models, and

emission scenarios and found that SDM type is the pri-

mary source of uncertainty (Thuiller, 2004; Pearson

et al., 2006; Buisson et al., 2010). Although ensemble

forecasting has been proposed as a solution to this

uncertainty (Ara�ujo & New, 2007), other studies

showed that carefully evaluating SDMs (e.g., Elith et al.,

2010) and comparing only a few models that tend to

produce good fits reduces uncertainty greatly (Diniz-

Filho et al., 2009).

Different assumptions about regional human popula-

tion growth and rate of land development lead to

uncertainty in forecasting land-use change (Landis &

Reilley, 2003). For example, the choice of the historical

map used to parameterize urban growth rates and pat-

terns can lead to substantial differences in projected

land-use change (Syphard et al., 2011). The speed, type,

and location of future land-use change will likely result

in substantial changes to fire regimes in Mediterranean

ecosystems. As humans both increase ignitions and

suppress fires, changes in human population and hous-

ing density impact fire frequency and change the spa-

tial distribution of fire (Syphard et al., 2007; Bowman &

Murphy, 2010; Medler, 2010). Climate change may also

alter fuel moisture, fuel load, and ignition probability

(Bowman et al., 2009), potentially altering fire regimes.

Previous studies (Keith et al., 2008; Lawson et al., 2010;

Regan et al., 2011; Conlisk et al., 2012; Fordham et al.,

2012b) exploring the impact of fire frequency on plant

species found that fire frequency had a large effect on

population abundance, depending on the species’ fire

response.

Finally, the type of population model and parameter-

ization can have a strong impact on predicted species

abundance. For example, one-stage (or ‘scalar’) popula-

tion models tend to predict higher quasiextinction risk

than two-stage matrix population models (Dunham

et al., 2006). Furthermore, managers often wish to

parameterize population models to represent the

impact of disturbances, such as fire or the addition of

invasive plants, with very limited data. Taylor (1995)

and Ludwig (1999) show that estimates of extinction

risk are highly uncertain given variability in model

input, whereas McCarthy et al. (2003) and Brook et al.

(2000) demonstrate that relative rankings of risks are

reliable under parameter uncertainty.

The goal of this study is to determine which of the

various model components and parameterizations have

the biggest impacts on population predictions. This

question is important to land managers and conserva-

tion organizations tasked with finding the best manage-

ment options for protecting biodiversity in the face of

global change. Identifying the largest sources of model

uncertainty provides guidance in improving a model’s

value in theoretical and applied contexts. To make this

sensitivity analysis relevant to managers, we identify

the modelling components with the biggest influence

on model predictions through a comparison of the rela-

tive impact of climate change, land-use change, altered

fire frequency, and invasive species. If changes to the

model do not impact the relative importance of these

environmental stressors, then we can more confidently

use coupled dynamic habitat and population models as

a conservation tool.

In particular, we study the endemic annual plant

Acanthomintha ilicifolia, which is restricted to Southern

California, USA, and Baja California, Mexico. This is an

ideal case study in which to study compounding uncer-

tainty and the robustness of model outputs. Although the

species is well studied in some components (e.g. survival

rates), it is poorly understood in others (e.g. responses to

fire and extent of suitable habitat for this cryptic annual

species). Such uneven knowledge of demography and

ecology is typical for species of conservation or manage-

ment concern. Conservation managers are particularly

concerned that frequent fire may negatively affect

A. ilicifolia by increasing seed bank mortality or promot-

ing invasive plant species (Bauder & Sakrison, 1999).

Furthermore, this study uses the coupled model frame-

work to explore a different plant functional type; previ-

ous studies focused on obligate seeders and resprouters

(Keith et al., 2008; Lawson et al., 2010; Regan et al., 2011;

Conlisk et al., 2012; Fordham et al., 2012b).
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Materials and methods

SDM predictions of habitat suitability defined the carrying

capacities of metapopulation patches, and a demographic

model determined the population dynamics within and across

the patches. Each model simulation lasted 120 years, where

the first 20 years of a run were devoted to ‘initial equilibra-

tion’ before the impact of climate or land-use change began.

First, we describe the model components, and then we detail

the sensitivity analyses performed.

Current and future suitable habitat maps

We used SDMs to predict the distribution of suitable habitat

for A. ilicifolia as a function of environmental variables. Spe-

cies occurrence data were from the California Natural Diver-

sity Database and the Consortium of California Herbaria. The

environmental predictors included climate variables (January

minimum temperature, mean July maximum temperature,

and mean annual precipitation), soil variables, and terrain

variables important in determining Southern California plant

distributions (Syphard & Franklin, 2009; also see Appendix

S1.2 in Supporting Information). Because data for A. ilicifolia

are sparse (only 104 presence locations were available), we

used two machine learning methods, MaxEnt (Phillips et al.,

2006) and random forests–hereafter RF (Breiman, 2001; Prasad

et al., 2006; Cutler et al., 2007). These widely used methods are

robust to small, biased samples (Elith & Graham, 2009), and

were chosen to bracket possible differences among SDM

predictions. Locations were modelled as 100 m 9 100 m grid cells

derived from 1971–2000 averaged Parameter-Elevation Regres-

sions on Independent Slopes Model data (PRISM, Daly et al.,

2008) and spatially downscaled to a Digital Elevation Model (Flint

& Flint, 2012). The bootstrapped accuracy of the habitat suitability

models was AUC (area under the curve) = 0.904 for MaxEnt and

AUC = 0.870 for RF. Additional details are given in the Supple-

mentary Material (Appendix S1.2).

To project the distribution of future suitable habitat, we

substituted future climate variables into the MaxEnt and RF

predictor functions estimated from current climate data. We

used future climate predictions from two general circulation

models–the PCM climate model (from the Department of

Energy’s Parallel Climate Model) and the GFDL climate model

(from the National Oceanic and Atmospheric Association’s

Geophysical Fluid Dynamic Laboratory’s CM.2 model). Pre-

dicted climate variables for 2070–2099 were averaged, sepa-

rately for PCM and GFDL, to represent predicted climate at

the end of the century. Averaging over multiple years was

done to minimize transient climate differences and because

the definition of climate is 30-year average weather. Predicted

future climate was statistically downscaled and bias corrected

to PRISM data (Flint & Flint, 2012). Finally, to create a time

series of suitable habitat maps across 100 years, we linearly

interpolated between the current and future maps. We did not

consider other emissions scenarios because current trajectories

of greenhouse gas emissions are already higher than the most

fossil-fuel intensive of the SRES (Special Report on Emission

Scenarios) scenarios (Raupach et al., 2007); thus, the only other

emissions scenario available with high-resolution climate

projections for our study area (B1) is considered unrealistically

low. Also, as SDMs are blind to the source of alternate climate

predictions (i.e. different climate models vs. different emission

scenarios), considering different emission scenarios would not

contribute any further to our understanding of uncertainty in

the coupled models. Furthermore, Garcia et al. (2012) found

that the variability in habitat suitability predictions caused by

the emission scenario (B1, A1B, or A2) was roughly equivalent

to that of the climate model, with emissions scenarios becom-

ing more important at the end of the century.

To create dynamic projections of urban growth, we used

spatially explicit binary projections of urban development

from the SLEUTH model, which was carefully calibrated

for our study area (Syphard et al., 2011). Urban growth

projections were available for the study area for the period

2000–2050. In those projections, the rate of urban growth

asymptotes in about 2020, and so predictions beyond 2050

would result in negligible additional growth. This is because

the highly urbanized coastal and interior valleys of southern

California are surrounded by nondevelopable, mountainous

public land. When predicted urban development overlapped

otherwise suitable habitat, the areas were declared unsuitable

(see Fig. A.1).

Metapopulation patch maps

For a given year, a habitat suitability map assigns a continu-

ous suitability value (ranging from 0 to 1) to each cell. To

translate continuous suitability metrics to discrete habitat

patches, we selected a threshold value above which we

assume that habitat is suitable and below which we assume it

is not. The threshold criterion used was the value at which

sensitivity (proportion of presences predicted present) plus

specificity (proportion of background sample predicted to be

unsuitable) is maximized (see Freeman & Moisen, 2008). This

threshold criterion was consistent for both MaxEnt and RF.

The spatial resolution of the map of known A. ilicifolia popula-

tions was much finer than that of the model. The 40 hectares

of occupied A. ilicifolia habitat falls on specific soil types

within 481 one-hectare grid cells identified as suitable by our

thresholded models. The threshold was 0.37 for the MaxEnt

habitat suitability function (at that threshold training Sensitiv-

ity = 0.91), and 0.04 for the RF suitability function (Sensitiv-

ity = 0.88 and Specificity based on pseudoabsences = 0.75).

Threshold values typically differ among SDMs even when the

same criterion is used because probability values are scaled

differently for different types of models. The results of the

SDM model could then be coupled with the population model

by transforming the SDM data (gridded landscape made of

small cells of varying suitability) into population model data

(metapopulation patches), e.g. fields to entities sensu Good-

child (1994).

Suitable patches were defined as clusters of five or more

adjacent suitable cells. Although populations of A. ilicifolia can

occur on much smaller soil patches, areas smaller than five

cells (or five hectares) were considered too marginal to be

suitable habitat for the purposes of these simulations. The

carrying capacity of each patch was calculated as the sum of

habitat suitabilities over all cells within the patch, multiplied

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 858–869
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by a maximum density of 15 000 plants per hectare (Bauder

et al., 1994).

As A. ilicifolia is not thought to disperse significantly over

typical between-patch distances (US Fish and Wildlife Five-

Year Review 2009), we did not include between-patch dis-

persal in the model. However, within-patch dispersal can, in

time, have the effect of between-patch dispersal. As climate

changes, occupied patches can grow in size, annex previously

unsuitable cells, and thus allow A. ilicifolia to migrate into pre-

viously unsuitable cells. We used the software package

RAMAS GIS® 5.0 (Akc�akaya and Root 2005) to link the time

series of maps to the population model.

Demographic model (two-stage case)

In this case, two life stages are assumed, seeds and adult

plants, with both contributing to abundance. In a given year,

each plant either dies with no replacement or is replaced by

another plant or seed or both, leading to the dynamic:

nseedðtþ 1Þ
nplantðtþ 1Þ

� �
¼ CðtÞ nseedðtÞ

nplantðtÞ
� �

ð1Þ

Here nseed(t) and nplant(t) are the numbers of seeds and

plants in the patch in year t; and C(t) is a 2 9 2 matrix of coef-

ficients determining transitions from year t to year t + 1. C(t)

is assumed to be a random matrix, with each element in each

year separately and independently drawn from a lognormal

distribution, where the means and standard deviations for the

four elements of C(t) are as follows:

M ¼ l11 l12
l21 l22

� �
¼ 0:047 7:9

0:11 0:80

� �

S ¼ r11 r12
r21 r22

� �
¼ 0:019 5:0

0:072 0:70

� � ð2Þ

The randomness of C(t) in Eqn 1 represents environmental

stochasticity. The numerical specifications of the mean and

standard deviation matrices in Eqn 2 are based on Bauder

et al. (1994), and Bauder & Sakrison (1997). See Appendix S1

for a detailed description of these parameterizations. To incor-

porate demographic stochasticity, vital rates for each individ-

ual were draws from a Poisson distribution (for fecundities) or

a multinomial distribution (for transition rates) using the

patch-specific vital rates matrix.

Demographic model (one-stage case)

The one-stage model is as follows:

nplantðtþ 1Þ ¼ cðtÞnplantðtÞ ð3Þ

The coefficient c(t) is assumed to be randomly and indepen-

dently drawn each year from a lognormal distribution with

mean 1.43 and standard deviation 1.05. This mean and stan-

dard deviation were chosen for comparability with the corre-

sponding matrices in the two-stage model; the eigenvalues of

M and S from Eqn 2 are 1.43 and 1.05. Simulations suggest

that comparable abundance growth or decline was achieved

using either Eqn 1 or 3. In this part of the study, we are con-

cerned with the effect of population model structure (number

of stages) on model output, rather than the combined effects

of model structure and parameter uncertainty. Hence, we use

the eigenvalue of the two-stage model to parameterize the

one-stage model to ensure comparable parameterization.

Below, we consider the effects of parameter uncertainty on

population model output, separate from the comparison of

model structure. Although a growth factor of 1.43 may

appear large, the actual growth rate is constrained by fire

(described next) and demographic stochasticity (a high

standard deviation in annual growth rates leads to a low

geometric mean).

Fire

For each patch and year, the probability of fire was assumed

to depend on the time since the last fire according to a discrete

time Weibull hazard function:

k½TðtÞ� ¼ cTðtÞc�1=bc ð4Þ
Here k[T(t)] denotes the probability of a fire in year t given that

the last fire occurred T(t) years earlier; b and c are scale and

shape parameters (Polakow et al. 1999). We set c = 1.42, sug-

gesting a relatively low influence of time since last fire, as is

common in chaparral (Polakow et al. 1999), which covers the

majority of the study area and constitutes the matrix vegetation

for A. ilicifolia. In simulations, we chose b to represent average

fire return intervals from 20 to 80 years, in keepingwith historic

fire rates (Wells et al. 2004). At the start of a simulation, each

patch was given an initial value T(0) drawn from the Weibull

distribution. Fires were assumed to be spatially independent

and to burn entire patches. The largest patch in our model

(under the RF-GFDL climate change scenario) was 180,000 hect-

ares, roughly the same size as the six largest (>100,000 ha)

southern California fires that have occurred since 2001.

In a year in which a fire occurs, the mean vital rates matrix

M (and its eigenvalue 1.43) changes to the following fire

matrix F (and its eigenvalue 0.0614):

F ¼ ½f11; f12
f21; f22� ¼ ½0:014 0:39

0:011 0:0080�
ð5Þ

The only available information on the impact of fire on A.

ilicifolia is in qualitative assessments such as those in Bauder

& Sakrison (1999): ‘fire during summer or fall could have a

detrimental effect on Acanthomintha populations by diminish-

ing the seed availability for the next growing season …’ Thus,

the specification of F is highly tentative.

Invasive species

Vegetation managers have noted the spread of the non-native

grasses Brachipodium distachyon, Bromus spp., and Avena spp. in

A. ilicifolia habitat, often following a fire (P. Gordon-Reedy and

J. Vinje, personal communication). Thus, we considered two

scenarios in which hypothetical competition with other species,

described as ‘invasives’, lowers the mean vital rates of A. ilicifo-

lia after a fire, thus changing model behavior. In the first sce-

nario, A. ilicifolia suffers an immediate postfire disadvantage

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 858–869
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relative to invasives. In the first year after a fire, mean fecundity

and survival rates of A. ilicifolia are assumed to drop to 85%

and 90%, respectively, of their baseline values (the elements of

M in Eqn 2). The 85% and 90% specifications are based on com-

petition experiments by Bauder & Sakrison (1997). However, as

time passes, the vital rates gradually return, over roughly

35 years, to their baseline values. In the second scenario,

A. ilicifolia has no immediate postfire disadvantage; its mean

vital rates start at their baseline values. However, the mean

fecundities and survival rates, respectively, gradually decline

to 85% and 90% of their baseline values over roughly 25 years

as invasives are assumed to encroach and outcompete A. ilicifo-

lia (see Appendix S1.8). These two scenarios are based on the

speculated impact of fire in Bauder & Sakrison (1997).

Sensitivity analysis

The five model components, and how we varied them in the

sensitivity analysis, are as follows:

1. Choice of climate model, specified as either a PCM or a GFDL

climate model. The PCM and GFDLmodels yield contrasting

sets of climate predictions for California. PCM predicts a

slightly hotter and wetter climate, and GFDL predicts a sub-

stantially hotter and drier climate. These models are widely

used (Miller et al., 2008; Westerling & Bryant, 2008; Ackerly

et al., 2010; Sork et al., 2010) and preferred for climate change

impact analysis in California because, while their predictions

of historic climate closely match observations, they give con-

trasting predictions for future climate (Cayan et al., 2008).

Thus, the two scenarios bracket the variation that would be

found in a large ensemble of climatemodels.

2. Type of SDM for predicting habitat suitability, either Max-

Ent (Elith et al., 2011) or RF (Cutler et al., 2007). We com-

pared MaxEnt and RF because these methods are widely

used for predicting climate change impacts (e.g. Iverson

et al., 2008; Loarie et al., 2008; Lawler et al., 2009), and per-

form well in multi-SDM comparisons (Elith et al., 2006;

Prasad et al., 2006).

3. Land-use change, either the SLEUTH model of Syphard

et al. (2011) or no change in current land use.

4. Population model structure, either one stage (plant abun-

dance) or two stages (seed abundance and plant abundance).

5. Population model parameters, either M as in Eqn 2 or

1.25M (we doubt that our estimates for the parameters in M

would be off by more than 25%).

6. Fire return intervals, one of seven values of the mean fire

return interval, plus one no-fire alternative.

Two scenarios are considered for each of 1 to 5, and eight sce-

narios are considered for component 6, resulting in 256 model

variations for exploring uncertainty in forecasts of the effects of

future global change. We altered the values in M as opposed to

S or F because parameter sensitivity tests showed that the model

was most sensitive to values of M. In our additional parameter

sensitivity tests we doubled each value in M, S, or F individu-

ally for the two-stage population model, PCM climate change,

MaxEnt SDM, and land-use change scenario (other scenarios

give broadly similar results). We also doubled all values in each

matrix simultaneously and compared abundances.

Finally, to place this sensitivity analysis in the context of

conservation planning we compared how the relative ranking

of four hypothetical management scenarios – land-use change

mitigation, fire suppression, competition from invasive plants,

and climate change mitigation – depend on different model

components (64 models).

Results

Results are presented in terms of ‘average final abun-

dances’ for A. ilicifolia–the abundance at the end of each

120-year simulation, averaged over 1000 repetitions of

the simulation. When habitat suitability is predicted by

RF rather than MaxEnt (Fig. 1), average final abun-

dances are higher across all scenarios (Fig. 2). Average

final abundances also increase with fire return interval

(Fig. 2). Fewer fires lead to higher abundance for every

combination of SDM and population model type. Error

bars showing the standard deviation in average final

abundance over 11 repetitions of 1000 run sets of simu-

lations are given on Fig. 2a. These error bars are typi-

cally smaller than the size of the plotting symbols. This

is true for other series on Fig. 2 and on subsequent

figures; therefore, we omit further error bars. However,

variability from run to run for a given scenario was

high, often reflecting the fact that A. ilicifolia abundance

declines to zero. These results are consistent with obser-

vations on A. ilicifolia, which show large fluctuations in

population size (M. Kelly, unpublished data presented

in Appendix S1.5). High reported standard deviations

in vital rates data (E. Bauder, personal communication)

were used to model environmental stochasticity, where

highly variable growth and survival rates lead to

extinction across all metapopulation patches in many of

the model runs. The coefficient of variation in average

final abundance was around three for short FRIs and

decreased to roughly 0.25 in the absence of fire.

(Appendix Figure S2.2 shows coefficients of variation

for the various runs.)

Across all scenarios, average final abundance was

higher for the PCM climate model than for ‘no change’

(Fig. 2), resulting from the predicted expansion of suit-

able habitat (Fig. 1). However, the impact of the GFDL

climate model, relative to ‘no change’, depended on

which SDM model was used. When the MaxEnt model

was used (Fig. 2c,d), the GFDL scenario predicted

abundances lower than the ‘no change’ scenario. When

the RF model was used (Fig. 2a,b), the GFDL scenario

predicted abundances higher than the ‘no change’ sce-

nario. Projected urban growth decreased average final

abundance across all scenarios (Fig. 2).

To further illustrate the effects of model components

on forecasts of global change, the 256 scenarios were

divided into 128 pairs such that each pair corresponded

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 858–869
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to one of five treatments (listed as 1–5 in the Methods):

SDM, parameter increase, climate model, land-use

change, and population model. Consider SDM choice

as an example. For each SDM pair, the average final

abundance for the RF treatment was divided by the

average final abundance for the MaxEnt treatment,

with all other treatments held the same. The resulting

128 ratios are displayed as the column of 128 gray dots

on Fig. 3 above the label ‘RF/MaxEnt’. As the average

dot height (the black square) and most of the dots indi-

vidually exceed one, this indicates that RF predicts

more favorable habitat scenarios for A. ilicifolia than

MaxEnt. Likewise, the other columns indicate that

increasing M is more favorable to average final abun-

dance than not, that PCM is more favorable than GFDL,

that no land-use change is more favorable than land-

use change, and that the two-stage population model is

slightly more favorable than the one-equation model.

Furthermore, the relative heights of the five columns

indicate that the average final abundances are most

sensitive to the SDM assumption, second most sensi-

tive to the parameter-level assumption, third most sen-

sitive to the climate change assumption, fourth most

sensitive to the land-use assumption, and barely sensi-

tive to population model type.

The following equation summarizes these results as a

regression.

lnðAveFinalAbundanceÞ ¼ 16:92þ 1:59SDM

ð0:091Þ ð0:058Þ
þ 1:20 ParameterIncrease ð0:058Þ
þ 1:18 Climate� 0:54 LandUseChange

ð0:058Þ ð0:058Þ
� 0:150 PopModelþ 0:0101 FRI

ð0:058Þ ð0:00097Þ
Here SDM, ParameterIncrease, Climate, LandUse-

Change, and PopModel are binary (0 or 1) explanatory

variables for the five major contrasts, with 1 corre-

sponding to MaxEnt SDM, a 25% increase in all the vital

(a) (b)

(c)

Fig. 1 Map of the study area: most of San Diego and Orange Counties, western Riverside County, and the southern corners of Los

Angeles and San Bernardino Counties (see inset). In all three maps, black represents current urban areas, dark blue represents the

extent of urban expansion by 2050, yellow represents MaxEnt predicted suitable habitat, light blue represents RF predicted suitable

habitat, and green represents suitable habitat predicted by both SDMs. Map (a) shows habitat currently occupied by Acanthomintha ilici-

folia in pink dots and SDM predictions for the current climate. Map (b) shows predicted 2100 suitable habitat for the PCM future

climate scenario. Map (c) shows the same for the GFDL scenario.
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rates in M, PCM climate, land-use change included, and

a one-stage population model, respectively. The ‘no fire’

scenarios of Figs. 2–3 are here replaced by scenarios

with FRI = 120 years. With five binary contrasts and

eight FRI values (20, 30, 40, 50, 60, 70, 80, 120), the

regression sample size is 25 9 8 = 256 observations.

The regression R2 is 0.88. Estimated standard errors

are given in parentheses under the regression coeffi-

cients. Because the five binary variables enter the

regression in a symmetric way, their standard errors

are the same. The variance of the predicted depen-

dent variable on the left equals the weighted sum of

the variances of the six uncorrelated explanatory var-

iable terms on the right, where the weights are the

squared regression coefficients. Thus, a measure of

the importance of an explanatory variable in creating

uncertainty about the dependent variable is the

explanatory variable’s variance times its squared

regression coefficient. For the six explanatory vari-

ables, these uncertainty measures are 0.64 for SDM,

0.36 for Parameter Increase, 0.35 for Climate, 0.073

for Land-Use Change, 0.0056 for PopModel, and

0.091 for FRI.

Parameter sensitivities are further investigated in

Table 1, using the benchmark scenario: two-stage popula-

tion model, PCM climate model, MaxEnt SDM, and land-

use change. Sensitivities are described by changes in

‘abundance ratios,’ each defined as the ratio of (i) an aver-

age final abundance after doubling selected parameters to

(ii) the average final abundance for the scenario with no

parameter change. Doubling the mean vital rates matrix

had the biggest impacts on abundance ratios, followed by

the standard deviation matrix and then the fire matrix.

The effect of seed survival in the mean vital rates matrix

and the effect of fire on vital rates had the smallest

impacts, which is fortunate in the sense that these param-

eters were the least well described by the available data.

Two scenarios in which hypothetical ‘invasive spe-

cies’ lower mean vital rates of A. ilicifolia after a fire are

compared to each other and to scenarios without inva-

sives, assuming MaxEnt or RF SDM, a two-stage model,

PCM or GFDL climate change, and land-use change

(a) (b)

(c) (d)

Fig. 2 Average final abundance as a function of average fire return interval for four combinations of SDMs and population models: (a)

RF SDM and two-stage population model, (b) RF SDM and one-stage population model, (c) MaxEnt SDM and two-stage population

model, and (d) MaxEnt SDM and one-stage population model. Within each panel, the differently labeled points correspond to different

climate and land-use change scenarios, as indicated in the legend box superimposed on panel (a). Error bars on the ‘PCM, land use’ sce-

nario in (a) represent the standard deviation over final abundance. Because the error bars are typically smaller than the size of the plot-

ting symbols (open squares), error bars have been omitted on all subsequent scenarios.
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(Fig. 4). Under both invasive scenarios, competition

with the invasives reduces A. ilicifolia abundance, with

final abundance ratios below one. The first invasive sce-

nario, in which A. ilicifolia suffers an immediate postfire

disadvantage relative to invasives, has much higher

final abundance ratios (Fig. 4a) than the second

scenario (Fig. 4b), in which A. ilicifolia has no immedi-

ate postfire disadvantage but vital rates decline over

time since last fire. The ratios of final abundance are

highly dependent on FRI in both invasive scenarios.

The final abundance ratio of the GFDL–MaxEnt sce-

nario is much higher than for the other scenarios

(Fig. 4b). The GFDL–MaxEnt scenario leads to loss of

suitable habitat, whereas the other climate–SDM combi-

nations lead to gains in suitable habitat. Thus, abun-

dance decline is primarily driven by declining carrying

capacity, not the presence of invasive competitors, and

there is a smaller difference between scenarios with

and without invasives. Unfortunately, there are no data

to determine which invasive scenario is more realistic.

Five hypothetical management options are considered

for each of the four climate–SDM combinations coupled

with the two-stage population model (Fig. 5). The five

management options represent a set of actions leading to

climate change mitigation (no further changes in temper-

ature and precipitation), fire suppression, cessation of

land-use change (resulting in no further habitat loss due

to urban growth), and two kinds of invasive species sup-

pression. The ratio of average final abundance under each

management option to average final abundance without

that option is shown in Fig. 5. There are large differences

inmanagement impacts, indicated by relative bar heights,

both across the five options and the four climate–SDM

combinations. Rankings of management options are very

sensitive to model assumptions. The two PCM scenarios

share the same ranking but differ from the GFDL rank-

ings, and the GFDL rankings also differ between SDMs.

However, in all climate–SDM combinations, the most

important management option is mitigation of invasives

when A. ilicifolia has the immediate postfire advantage.

Themanagement optionwith the least impact on this spe-

cies is climate change mitigation. Fire suppression ranks

highly in three of four climate–SDM combinations.

Discussion

Although dynamic SDMs coupled with population

models make it possible to study the effects of global

change on biodiversity, and to compare conservation

management strategies, such models involve numerous

choices about assumptions and parameters, leading to

uncertainties about model results. Sensitivity analyses

can shed light on which assumptions and parameter

specifications are the most important sources of uncer-

tainties. We present a case study of uncertainty analysis

for a model of the endangered species Acanthomintha

ilicifolia (San Diego thornmint). The main components

of our framework are an SDM component, a climate

component, a land-use component, a metapopulation

model component, and a fire component.

Our results indicate that the SDM component is the

most important source of uncertainty, that population

model parameter specifications are the next most

important, followed by climate change assumptions,

fire assumptions, land-use assumptions, and choice of

one-stage vs. two-stage population model. Changing

the SDM component from MaxEnt to RF has a large

effect on predicted A. ilicifolia abundance over our

100-year horizon. This result is somewhat surprising as

we contrasted only a few carefully constructed models

(Elith et al., 2010) and the two machine learning models

are among the most accurate SDM techniques (Diniz-

Filho et al., 2009). However, substantial variation in

results across SDMs used to project species distribu-

tions has been well documented (Thuiller, 2004), and in

our study the amount and location of suitable habitat

had a large impact on population dynamics.

Uncertainty was illustrated in the context of manage-

ment options for promoting species viability: cessation

Fig. 3 Sensitivities of final abundances to changes in compo-

nent scenarios. Each column of dots concerns an all-else-equal

change to a component scenario. In the first column, labeled

‘RF/MaxEnt’, there are 128 specifications for completing the

model (by selecting from two climate change options, two land-

use change options, two population model options, and eight

fire return options) using RF and 128 specifications for MaxEnt.

The two lists of 128 abundances for RF and MaxEnt can be

paired appropriately (matching specifications) and the ratio of

the two average final abundances may be computed (RF in the

numerator and MaxEnt in the denominator). The resulting 128

ratios are plotted as the gray diamonds in the first column. The

black square, which exceeds one (suggesting that abundances

are typically higher for RF simulations), designates the average

of the gray dots. The vertical spread of the gray diamonds indi-

cates the distribution of outcomes over the 64 specifications.

Parallel interpretations apply to the other four columns.
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of climate change vs. fire suppression vs. limited land-

use change vs. invasive species suppression. Different

combinations of SDM, climate, and population model

assumptions led to different effectiveness rankings of

these management options. This has implications for

using coupled models in decision making. For such

Table 1 Population model sensitivities. Sensitivities of abundance ratio to doubling of one or all vital rate : (a) means; (b) standard

deviations; (c) for a fire year

FRI = 20 FRI = 30 FRI = 40 FRI = 50 FRI = 60 FRI = 70 FRI = 80 No Fire

(a)

l11: seed survival 1.72 1.69 1.29 1.34 1.27 1.24 1.24 1.13

l12: seed fecundity 13.72 7.13 4.34 3.78 3.28 3.00 2.83 2.05

l21: seedling to adult 14.61 7.45 4.40 3.82 3.23 2.95 2.84 2.01

l22: adult replacement 16.05 7.92 4.72 4.04 3.50 3.17 2.99 2.11

All vital rate means 24.15 10.16 5.63 4.69 3.96 3.52 3.31 2.14

(b)

r11: seed survival 0.91 1.01 0.87 0.93 0.94 0.90 0.94 0.94

r12: seed fecundity 0.13 0.19 0.22 0.27 0.26 0.24 0.29 0.35

r21: seedling to

adult

0.14 0.22 0.23 0.27 0.26 0.28 0.33 0.42

r22: adult
replacement

0.17 0.21 0.23 0.29 0.27 0.30 0.29 0.42

All vital rates std

deviations

0 0 0 0.001 0.001 0.001 0.001 0.003

(c)

f11: seed survival 1.24 1.26 1.10 1.12 1.00 1.05 1.04 1.00

f12: seed fecundity 1.09 1.32 1.04 1.04 1.04 0.98 1.04 1.04

f21: seedling to

adult

1.64 1.66 1.28 1.22 1.18 1.12 1.12 1.05

f22: adult

replacement

0.91 1.10 0.83 0.99 0.96 0.98 0.99 1.01

All vital rates

for fire year

2.20 1.84 1.42 1.29 1.19 1.13 1.09 1.00

Each tabled entry is a sensitivity of a broad model indicator to an all-else-equal doubling of an underlying vital rate parameter (or

set of vital rate parameters), measured at a particular fire return interval, denoted ‘FRI’. The broad model indicator is the ratio of (i)

the average final abundance for a benchmark climate and land-use change scenario to (ii) the average final abundance for that same

scenario, but with a given parameter or set of parameters changed. The benchmark scenario assumes the two-stage population

model, MaxEnt SDM, PCM climate model, and presence of land-use change. Thus, the ratios are estimates of how much abundance

will change in response to climate and land-use change. A tabled entry that deviates substantially from one indicates an important

parameter to the model.

(a) (b)

Fig. 4 Ratio of (a) average final abundance under a scenario that simulates competition with an invasive species to (b) average final

abundance under the same scenario without invasives. The two panels are for two different invasive scenarios described in Methods.
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models to be useful in conservation, they should be

able to reliably predict the stressor with the biggest

impact on population viability. Because it is impossible

to know, a priori, which SDM is the most appropriate

for a given context, the current variability in future

suitable habitat predictions makes it difficult to decide

between various management options. Although cau-

tion must be used when interpreting the results of cou-

pled models, it is important to note that, across all

scenarios, reducing the impact of invasives (in the

event that A. ilicifolia has the postfire advantage) consis-

tently ranked the most beneficial management option.

However, the two different invasive scenarios ranked

very differently in terms of management efficacy. Thus,

the impact of invasives on A. ilicifolia is highly uncertain.

When the invasive scenarios were not considered, reduc-

ing fire frequency consistently ranked among the most

beneficial management options across all scenarios.

We do not know which results of this uncertainty

analysis for A. ilicifolia would carry over to other spe-

cies. A. ilicifolia is a rare, annual plant in a highly urban-

ized area that may go undetected over much of its

range, despite its specialization to distinctive clay soils.

The variability in SDM outcomes we report here may

be uncommonly high due to uncertainty in our under-

standing of the species’ current distribution or inability

to model its soil specialization. Thus, our study species

might be unique. However, we believe that numerous

elements of our study would apply to other species.

Specifically, we expect that the two SDMs we used

would bracket a range of plausible predictions. In a

study of habitat suitability predictions under climate

change for multiple African taxa, Garcia et al. (2012)

found that RF predicted the largest habitat gains of any

SDM considered. In another study, MaxEnt had greater

specificity as compared with RF when used to extrapolate

into novel climate conditions (Heikkinen et al. 2012).

Thus, the optimistic RF model provided a good contrast

against the pessimistic MaxEnt model in sensitivity

analyses. Regarding climate, we chose two very differ-

ent climate predictions. The GFDL prediction is consid-

erably hotter and drier than the PCM prediction. These

two climate predictions are well established for use in

California specifically because they bracket the range of

variability that would be found in a larger ensemble of

climate predictions (Cayan et al., 2008). Even using

such different climate projections, SDMs were a larger

source of uncertainty than climate predictions.

It is likely that our results are robust to how we

linked SDMs to population models. Our models used

SDM suitability predictions to define metapopulation

patches and their carrying capacities. Alternatively, we

might have used SDM predictions to define other popu-

lation model parameters, such as vital rates (a novel

approach as far as we know). We believe that assigning

a strict carrying capacity defined by abiotic resource

limitation is the most realistic way to model a wide

variety of plant populations, especially A. ilicifolia,

which is highly dependent on clay soils. Furthermore,

SDMs lend themselves straightforwardly to parameteri-

zation of carrying capacity, whereas additional

assumptions would be required to link SDM predic-

tions to vital rates.

As compared with other annual plants, there is a con-

siderable amount of A. ilicifolia life-history data for

parameterizing the vital rates matrix M (and less for S

and much less for F). These data suggest that growth

rates are highly variable between years (see Appendix

S1.5). Thus, many of the model runs predicted extinc-

tion, whereas other runs predicted that the population

was at carrying capacity. For many species that have

high growth rates but short lifespans, such variability is

common (NCEAS Global Population Dynamics Data-

base). Thus, we do not believe that our results are lim-

ited by the life history of A. ilicifolia. Regardless, in an

effort to exaggerate the impact of changes to life-history

parameters as compared with other model components,

we dramatically increased the growth and survival

Fig. 5 Ratio of average final abundance under a given ‘manage-

ment option’ to average final abundance without the manage-

ment option, for each of four SDM–climate scenarios (the four

sets of five bars each). The management options are climate

change mitigation (black bars), fire suppression (white bars),

cessation of land-use change (cross-hatch bars), and suppression

of invasives (inv) under two assumptions about the behavior of

Acanthomintha ilicifolia (ACIL) in resisting the invasives (dark

and light gray bars). All scenarios assume the two-stage demo-

graphic model and, except for the no-fire option, a 30-year aver-

age fire return interval. Large differences in relative bar heights

indicate that the effects of management options are very sensi-

tive to model assumptions.
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rates of A. ilicifolia in our sensitivity analyses. When

vital rates were increased, the strict carrying capacity,

defined by the SDMs, put a limit on how much the

population could grow. Thus, SDMs still led to the

most uncertainty in model predictions.

The only model component that rivals SDMs in con-

tributing uncertainty to management options is the

impact of invasive species. When invasives are excluded

from the analysis, the most effective management

option is fire suppression, followed by curbing land-use

change for three of the four SDM-climate combinations.

The one exception is the MaxEnt–GFDL scenario, for

which curbing land-use change is most effective

(because much of the suitable habitat predicted by the

MaxEnt–GFDL scenario is land slated for urban devel-

opment). When invasives were included, the two GFDL

scenarios differed from one another and from the two

PCM scenarios in the ranking of management options.

Across all scenarios, the biggest impact on average final

abundance is due to invasives in the event that A. ilicifo-

lia has the immediate postfire advantage. However,

when invasives have the immediate postfire advantage,

the relative rank of managing invasives varies for the

different SDM–climate scenario combinations. Thus,

despite the potential importance of invasives, we cannot

define an optimal management option due to the

scarcity of data on the impact of invasives.

Similar analyses for other species would be valuable.

For reasons detailed above, we might expect SDMs to

be the biggest source of uncertainty for other species

with better known demographic model parameters and

for which the extent of suitable habitat is uncertain due

to low detectability and limited dispersal. However, it

is possible that variability in SDM predictions for A.

ilicifolia is due to the species’ specialization to clay soils,

an association that might make it difficult to separate

habitat suitability due to broad-scale environmental

predictors from habitat suitability occurring at a finer

spatial resolution. Furthermore, we did not explore all

of the dozens of available SDMs, climate models, and

land-use change scenarios.

Studying more species, SDMs, and climate predic-

tions is an obvious next step. It would also be interest-

ing to consider a range of different model structures

across SDMs, climate models, population models, and

responses to invasives. The dynamic coupled SDM–
population models in this study use regional species

distribution data to predict habitat suitability, and thus

carrying capacity. Alternatively, population models

could be constructed that use local, within-population

data to define how growth and survival rates vary as

climate changes. If such data became available, the esti-

mated impact of climate change could be based on

richer, more detailed local ecological mechanisms. The

impact of climate change as modelled by habitat suit-

ability in coupled models could be compared with the

impact of climate change modeled through changing

vital rates in a population model.
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