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Abstract

Understanding where and how fire patterns may change is critical for management and pol-

icy decision-making. To map future fire patterns, statistical correlative models are typically

developed, which associate observed fire locations with recent climate maps, and are then

applied to maps of future climate projections. A potential source of uncertainty is the com-

mon omission of static or dynamic vegetation as predictor variables. We therefore assessed

the sensitivity of future fire projections to different combinations of vegetation maps used as

explanatory variables in a statistically based fire modeling framework. We compared models

without vegetation to models that incorporated static vegetation maps and that included out-

put from a dynamic vegetation model that imposed three scenarios of fire and one scenario

of land use change. We mapped projected future probability of all and large fires (> = 40 ha)

under two climate scenarios in a heterogeneous study area spanning a large elevational

gradient in the Sierra Nevada, California, USA. Results showed high model sensitivity to the

treatment of vegetation as a predictor variable, particularly for models of large fire probability

and for models accounting for wildfire effects on vegetation, which lowered future fire proba-

bility. Some scenarios resulted in opposite directional trends in the extent and probability of

future fire, which could have serious implications for policy and management resource allo-

cation. Model sensitivity resulted from high relative importance of vegetation variables in the

baseline models and from large predicted changes in vegetation, particularly when simulat-

ing wildfire. Although statistical fire models often omit vegetation due to uncertainty, model

sensitivity demonstrated here suggests a need to account for that uncertainty. Coupling sta-

tistical and processed based models may be a promising approach to reflect a more plausi-

ble range of scenarios.

Introduction

The scientific community is reaching growing consensus that global climate change will signif-

icantly alter future wildfire dynamics, e.g., [1–3]. Thus, a key research and management chal-

lenge is to project and map potential future changes in the extent and location of wildfire

patterns. Understanding where and how fire patterns may change in the future is critical for
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fire managers and policy makers trying to develop strategies and anticipate resources needed

to prepare for these changes.

Fire patterns emerge over space and time according to regionally distinctive fire regimes,

e.g., via variation in fire size, frequency, area burned, and severity; which derive from a land-

scape’s climatic, topographic, and vegetative characteristics, plus the timing and distribution

of lightning or human-caused ignitions [4–6]. Therefore, the idea behind mapping the spatial

manifestation of future fire regimes is to model the relationships among and mechanisms

behind the primary drivers of recent fire activity, particularly climate, to predict future fire

activity as a function of changes in the drivers.

The two primary methodological approaches used for mapping future fire activity include

statistical-correlative models and process-based simulation models, although projections

based on changes in fire danger indices have also been developed [7–9]. The statistical

approach is similar to species distribution modeling [10] in that response functions are esti-

mated based on observations of fire occurrence or frequency in relation to their hypothesized

climatic or other human or biophysical environmental drivers [11–12]. Fitted models condi-

tioned upon point locations reflecting recent conditions are then used to map the likelihood of

fire at unmapped locations in space and time; future fire patterns are mapped by substituting

projected future climate maps for the current climate variables used to fit the model [13–14].

Advantages of this top-down statistical approach are that these models are relatively simple

to parameterize and provide intuitive mapped output; they provide an assessment of variable

importance, thus contributing to theoretical understanding of fire-climate relationships; and

they efficiently enable comparisons of alternative climate or management scenarios. Major

drawbacks include the assumption of stationary relationships over time and the inability to

account for dynamic feedbacks among fire, climate, vegetation, and human activity [9,15–16].

In particular, the common practice of omitting vegetation dynamics could introduce a major

source of uncertainty into model projections, as fuel moisture, abundance, and structure are

key controls over fire activity [17]. Climate change is expected to independently result in dra-

matic, yet uncertain plant species range shifts due to physiological constraints [18,19]. Fire

also feeds back strongly with climate and vegetation patterns [1,16,20].

Despite the importance of vegetation in controlling fire, the overwhelming amount of uncer-

tainty in future vegetation dynamics [21] is one argument for excluding vegetation in future fire

mapping efforts [22]. On the other hand, some efforts have accounted for the spatial distribu-

tion of broad fuel types or characteristics by using a static map of vegetation or net primary pro-

ductivity as a predictor variable in the statistical models and keeping the map constant while

climate variables change [9,14,23]. An alternative approach for explicitly accounting for vegeta-

tion has been to assume that certain climate covariates can implicitly account for the primary

climatic controls over vegetation that are relevant to fire behavior [9,24]. Fire activity tends to

be highest at intermediate levels of productivity, resulting from distinctive combinations of tem-

perature and moisture [25–27]. These combinations can be quantified via indices of climatic

water balance (i.e., via actual evapotranspiration (AET)) and fuel moisture (i.e., climatic water

deficit (CWD)) and used to assume future vegetation conditions [28–29].

The primary alternative to statistical mapping of future fire activity is to use process-based

dynamic global vegetation models (DGVMs) that can explicitly represent and simulate fire-cli-

mate-vegetation interactions and feedbacks. These models can simulate the complex nonline-

arities and feedbacks that are not possible with static correlational models, however, the

geographical distribution of fire in these models remains relatively crude, in part due to the

typically coarse resolution associated with modeling on a regional to global scale [25,30–31].

In addition to climate, vegetation, and topography (which is not difficult to account for, as

it remains static over time), land use and land cover change may also be significant drivers of
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future fire activity. Land use patterns, particularly urban development, are spatially correlated

with human ignitions [32–34], and land cover change imposes additional modifications to fuel

conditions and continuity [35–37]. Human influence, in addition to climate, has been shown

to be a significant factor in controlling fire patterns in a statistical modeling approach applied

to North America [38]. While few statistical projections of future fire patterns account for

dynamic land use change, one study incorporated forecasts of housing extent and density with

climate change projections, and results showed that up to 50% of the variation in future fire

patterns was due to anthropogenic factors [29].

Given that sound management and policy decisions require plausible maps of fire activity

patterns [5], it is important to understand the range of uncertainty imposed by excluding vege-

tation from climate-based fire projection maps. Therefore, our objective was to assess differ-

ences in future fire projections as a result of using different combinations of vegetation maps,

in addition to climate and topography, as explanatory variables in a statistically based fire

modeling framework. We compared models without vegetation with models that incorporated

static vegetation maps in addition to models that included dynamic output vegetation maps

from a DGVM that imposed three scenarios of fire (no fire, fire suppression, and fire without

suppression). We also ran the DGVM with and without projections of land use change. We

mapped the projected future probability of all fires (of any size) and large fires (> = 40 ha)

under two climate scenarios in a heterogeneous study area spanning a large elevational gradi-

ent in the Sierra Nevada, California, USA.

We asked:

1) How important is vegetation relative to climate, topography, and land use in statistical-cor-

relative models of fire distribution?

2) Does the explicit integration of vegetation lead to different conclusions about future fire

patterns?

3) Are there differences in projections based on the use of static versus dynamic vegetation

inputs or dynamic simulations of fire?

4) Are any projected differences in projections mediated by climate scenario or size of fire

modeled?

Materials and methods

Study area

The study area included Butte and Plumas Counties, in addition to a 20 km buffer surrounding

them (2,277,679 ha of land), on the western slope of the northern Sierra Nevada, California

where the range transitions to the southern end of the Cascades (Fig 1A). The region is biophy-

sically heterogeneous and spans an elevational gradient from 11m in the Central Valley to

3128m in Lassen Volcanic National Park (Fig 1B). The climate is primarily Mediterranean with

most of the precipitation occurring in winter, and there is a strong climatic gradient from west

to east. Vegetation is also diverse, with grassland, shrubland, and mixed forest dominating the

lower-elevation foothills where most of the development is located; conifer forest interspersed

with mixed forest and shrublands dominating in the highest elevations; and shrublands again

covering most of the lower-elevation eastern slopes of the mountains. Much of the landscape is

protected in the Lassen, Plumas, and Tahoe National Forests and Lassen Volcanic National

Park, but there has also been substantial residential development in the foothills, extending out

of the Chico, CA metropolitan area. Wildfire is an important and frequent natural ecological
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process in the region. Human-caused ignitions dominate in the lower elevations while lightning

is more common in the higher-elevation forests. Recent wildfires in 2008, 2015, and 2017

resulted in more than 1000 structures destroyed and two lost lives in Butte County.

Data

We modeled projections of future fire distributions using a range of topographic, climatic,

anthropogenic, and vegetation explanatory variables (Table 1). After considering a larger

range of potential variables than those listed below, we used ENMTools [39] to calculate Pear-

son correlation coefficient between predictors for each baseline model (described below). For

predictors with values r> = 0.8, we selected the variable with higher mean 5-fold cross vali-

dated area under the receiver operating characteristic curve (AUC), a threshold-independent

assessment of model discriminatory ability [40] in a univariate model. While elevation did

Fig 1. a) Butte and Plumas Counties study area in the Sierra Nevada, California, USA, and b) elevation (meters). Sources of base map: National Geographic, Esri,

DeLorme, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, iPC.

https://doi.org/10.1371/journal.pone.0201680.g001
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perform better than highly correlated climate variables for large fires, we opted to drop it to

maximize sensitivity to climate projections. To match the resolution of the climate data, we

resampled all of the gridded explanatory variables to 270m.

Fire data. Given that conditions needed for fires to become large may be different than

conditions for fire to simply occur [11,41–42], we developed and ran statistical projections

based on two sources of fire data (Table 1). We compiled the first dataset, hereafter “all fires,”

from the National Interagency Fire Program Analysis, Fire-Occurrence Database (FPA FOD)

[43], which includes the spatial coordinate information indicating the point of ignition for all

fires across all land ownership types, with the date and size of fire included as attributes. We

overlaid and selected all fires that occurred within the study area for the years 2000–2010, to

ensure we developed models based on recent environmental controls. To minimize the poten-

tial influence of spatial autocorrelation, we compared four minimum nearest neighbor dis-

tance filter sizes for thinning the points (500m and 1, 2, and 5 km). The 500m performed

slightly better than the others (best balanced sensitivity and area predicted suitable), reducing

the sample size from 7238 to 2048.

Table 1. Description of variables used for statistical modeling of fire patterns in Butte and Plumas Counties, CA.

Variable Description and source Range and units

Fire (Dependent
variable)
All fires Fire occurrence locations 2000–2010 (Short 2014) 0.004–26302.321 ha, mean

23.430

Large fires Cal Fire fire perimeter database 41.624–26288.361 ha,

mean 1611.678

Terrain
Slope LANDFIRE, 30-m native resolution, aggregated by mean to 270m 0–48.23; %

Solar insolation index Derived from LANDFIRE elevation data: s = 2 –(sin((slope/90)180))�(cos(22 –aspect) + 1), aggregated by mean

to 270m

0.07–2.00, unitless index

Southwestness Derived from LANDFIRE elevation data: s = cos (aspect_lf—255), aggregated by mean to 270m -0.58–0.49; unitless index

Climate (1980–2010
normals)

Temperature seasonality Coefficient of variation across calendar year of temperatures 0.021–0.028; Kelvin

Annual minimum
temperature

Mean low temperature of coldest month -12.14–4.54; ˚C

Annual precipitation Sum over calendar year 131.43–2903.86; mm

Summer precipitation Sum over June, July, August 4.64–57.15; mm

Climatic Water Deficit Potential minus actual evapotranspiration 0–1021.77; mm

Vegetation
Vegetation type Landfire existing vegetation

Vegetation type Output from DGVM

Dead wood Output from DGVM 0–12551.9; g C m-2

Standing dead grass
carbon

Output from DGVM 0–120.963; g C m-2

Forest carbon Output from DGVM 0.002–34261.4; g C m-2

Land use effects Sleeter et al., 2017 Classes

Anthropogenic
Distance to roads TIGER line, Exclude 4WD and OHV roads; Combine others, including RRs. TIGER Roads 2015, U.S.

Department of Commerce, U.S. Census Bureau, https://www.census.gov/geo/maps-data/data/tiger.html

0–7521.3; m

Distance to development Extract developed areas from land use maps, calculate distance to development for current and each predicted

time step (Sleeter et al., 2017)

0–46131.3; m

https://doi.org/10.1371/journal.pone.0201680.t001
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For the dataset of large fires, we used the State of California Fire and Resource Assessment

Program (FRAP) fire history database that provides spatially explicit wildfire perimeter data

for all moderate-large fires reported by state and federal agencies. Again using data from

2000–2010 and overlaying the perimeters with the study area, we generated a random sample

of points within perimeters of fires> = 40 ha according to the method developed by Davis

et al. [22]. That is, within each wildfire, we generated the number of points per fire propor-

tional to the square root of the ratio between perimeter area and area of smallest fire, which

resulted in a sample size of 346. We also forced a minimum distance of 270m between the ran-

dom points generated so there would be no ‘duplicate’ points within a single grid cell.

Topographic data. We evaluated three topographic variables to account for the effect of

terrain on soil moisture and development, energy balance, and in turn, fuel characteristics and

flammability [10,44–45] (Table 1). To account for the role of terrain in moderating energy and

moisture balance, and in distinguishing xeric from mesic exposures, we used an index of solar

insolation [46] as well as ‘southwestness’ [45], which is a cosine transformation of aspect. We

also included slope, as this variable is also important in moderating fire behavior and spread

rates [17,44]. The slope and baseline elevation and aspect variables were acquired from LAND-

FIRE [47].

Climate data. We evaluated a range of climatic variables representing energy and mois-

ture gradients that have been significantly associated with fire patterns in other studies e.g.,

[9,13,22,38, 48–49] (Table 1). These included two temperature variables, annual minimum

temperature and temperature seasonality; two moisture variables, annual and summer precipi-

tation; and climatic water deficit (CWD), which is an integrative measure of climatic and

edaphic factors that are indicative of drought stress [50–51].

The climate data were available as annual historical and projected surface grids developed

by the California Basin Characterization Model (CA-BCM 2014) at a 270-m resolution

(https://cida.usgs.gov/thredds/CA-BCM-Catalog.html) [51]. Historical PRISM temperature

and precipitation data [52] were downscaled from 800-m resolution using Gradient-Inverse-

Distance-Squared (GIDS) downscaling [53]. We processed these annual data to create 30-year

baseline statistical summaries from 1980–2010. We compared future climate projections using

climate surfaces from two CMIP-5 General Circulation Models that have been recommended

as priorities for research due to their relevance to California and their range of possible futures

[54]. These included CNRM-CM5 (“cool/wet”) and MIROC5 (complement/cover range of

outputs). For both scenarios, we used the RCP 8.5 “business as usual” emissions scenario. We

processed the data for projections at three time steps (2010–2039, 2040–2069, and 2070–2099,

hereafter 2010, 2040, and 2070, respectively).

Vegetation data and output from MC2 DGVM. To generate dynamic projections of veg-

etation to use as input to the statistical model, we ran the MC2 dynamic global vegetation

model (DGVM) to create decadal mapped outputs of vegetation type and biomass. MC2 [55]

is a process-based model used at global to regional scales to simulate potential vegetation, car-

bon fluxes and pools, and wildfire. MC2 runs on a monthly timestep over a spatial grid, with

each grid cell simulated independently.

Three modules simulate biogeochemistry, biogeography, and wildfire. The biogeochemistry

module simulates water, carbon, and nutrient flows between pools based on climate, soil, and

starting state. The biogeography component of the model determines the potential life forms

and dynamic vegetation types on the landscape, which are defined based on a set of climate

and biomass threshold rules. In the model simulations, vegetation types (not species) shift in

response to climate change and atmospheric CO2 concentration. Competition between woody

vegetation and grass is simulated as a function of light, nitrogen, and available soil water. The
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model generates output for various live and dead carbon pools, carbon fluxes, fuel characteris-

tics, hydrologic fluxes, and vegetation characteristics.

Fire is simulated as a discrete event with impacts including mortality and aboveground bio-

mass consumption. A wildfire is triggered when a cell’s fuel condition exceeds its vegetation

type’s fuel threshold. Ignitions are assumed and a cell is limited to one fire per year. Fire sup-

pression effectively sets a vegetation type’s fuel condition threshold higher under the assump-

tion that fires occurring under less severe fuel conditions can be extinguished. The fraction of

a cell burned is limited to the years since last fire divided by its vegetation type’s fire return

interval.

Land use land cover (LULC) inputs used with the MC2 simulations were Sleeter et al.’s

[56]; hereafter Sleeter) business as usual (BAU) scenario projections. We aggregated Sleeter’s

development and transportation development classes into a single developed class and aggre-

gated all classes unaffected by human activity into natural. This produced five land use classes

for the model: developed, mining, annual agriculture, perennial agriculture, and natural.

Within MC2, when land is converted from natural to one of the other classes, all above- and

belowground vegetation components are removed. No vegetation grows in developed and

mining cells. Annual crops grow as grasses and harvest removes all aboveground live carbon,

90% of aboveground dead carbon, 50% of belowground dead carbon. 95% of belowground liv-

ing carbon is killed. Perennial crops grow as wild, with no harvest their first five years, removal

of 90% dead carbon and 50% of live growing season production during years 5–40, and com-

plete removal and restart after year 40. Fire is excluded from croplands.

MC2 is run in four separate phases: equilibrium to attain stable carbon pools and vegetation

cover; spinup to readjust carbon pools and vegetation types in response to dynamic fire; histori-
cal transient, driven by observation based climate data; and future transient, driven by pro-

jected future climate data. For this study, we ran MC2 across the entire state of California at a

30 arc second (approximately 800 m) resolution using observation-based historical climate

data from 1895 to 2010, and and future climate projections from 2011 to 2099. Results were

clipped the output to the extent of our study area. Outputs were resampled to match the cli-

mate data grid. To account for a range of potential fire and land use effects on vegetation and

biomass, we ran the model under combinations of three different fire scenarios (no fire, fire

suppression, and full fire) and with and without land use change incorporated into the simula-

tions (Table 2). The fire and land use scenarios were applied over the entire duration of the

MC2 simulations, from 1895 through 2100. Thus, vegetation change could be observable

before the simulation of future climate and land use projections.

Our objective was to compare results among scenarios with three different assumptions

regarding vegetation: no explicit vegetation (NoVeg), static vegetation (MapStat and ModStat

(MC2)), and simulated dynamic vegetation (ModDyn (MC2); Table 2). We first evaluated a

map of existing vegetation type (LANDFIRE [57]), (MapStat, Table 2), then cross-walked

reclassified vegetation types from that map to classes produced as output from MC2 to attain

the best comparability in simulated current conditions (S1 Table). To attain maximum map

agreement and simplicity for the statistical modeling, we consolidated vegetation types into

four broad vegetation types: grassland, shrubland, mixed and broadleaf forest, and needleleaf

forest. We merged and labeled the rest of the classes as nonflammable, including development,

agriculture, water, and barren land.

Because MC2 produces continuous model output that may be more directly related to

potential fire behavior than classified vegetation types, we also evaluated several of these con-

tinuous variables as potential predictors in the statistical models: Dead wood carbon; total eco-

system carbon; live aboveground carbon; and standing dead grass carbon.

Future fire probability and vegetation
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Anthropogenic data. Given that human infrastructure, including development and

roads, are spatially associated with ignition and fuel continuity patterns [11,42,58], we used

two anthropogenic explanatory variables in all scenarios: Euclidean distance to roads and

dynamic distance to urban development. To develop the distance to urban development data,

we extracted the “development” land use type from the Sleeter land use projections and calcu-

lated Euclidean surfaces to this binary land use type. We used 2010 development data for base-

line models and the 2010–2039 period, 2040 development data for the 2040–2069 period, and

2070 development data for 2070–2099 period.

Statistical modeling

To project future fire patterns under the alternative vegetation scenarios, we used the statistical

machine learning method, MaxEnt [59–60]. The model algorithm generates 10,000 randomly

located background points and then iteratively evaluates contrasts between values of the envi-

ronmental predictor variables at these background locations with values of the predictors at

the locations of the dependent variable (in this case, all or large fires). The best approximation

of the distribution is determined as the one with maximum entropy. The output is an expo-

nential function that assigns a probability of occurrence to each site or cell of a map. MaxEnt is

widely used in many fields, with thousands of applications published in scientific journals,

including for mapping the distribution of all or large fires [22,24,38,48]. Its wide use is largely

due to its reputation as one of the top-performing modeling methods for probabilistic distribu-

tion modeling [61–63].

For all scenarios, we used MaxEnt version 3.3.3k with the default settings, except we excluded

product and threshold features, did not use clamping, and used a regularization multiplier of 1.5

to minimize overfitting. We developed three different baseline models for both all fires and large

fires to correspond with the three versions of vegetation used to establish historical conditions.

These included a baseline with no vegetation, a baseline using the LANDFIRE existing vegeta-

tion type map, and a baseline using the 2010 vegetation output of the MC2 model. We ran the

baselines with 5 cross-validated replicates to get a mean 5-fold CV AUC and permutation

importance values. For the future projections under different climate and vegetation scenarios,

we projected the baseline models onto maps of future conditions for all time steps.

Analysis. To compare all scenarios, we first calculated the total predicted suitable area of

all and large fires by applying a threshold to create binary maps. We used a threshold of maxi-

mum sensitivity plus specificity because it has been shown to optimize discrimination between

presence and absence data [64]. From the resulting binary maps for all scenarios and time

Table 2. Name and description of vegetation scenarios used for statistical fire mapping projections. All eight scenarios were also modeled under two climate change

scenarios (MIROC and CNRM) and for two sources of fire data (all fires and large fires).

Scenario name Abbreviation Baseline for projections Vegetation Time variant Fire Land use
No vegetation NoVeg NoVeg None — — —

Mapped static MapStat MapStat Mapped veg Static — —

Modeled static ModStat ModStat Modeled veg Static — —

Modeled dynamic ModDyn ModStat Modeled veg Dynamic — —

Modeled dynamic land use ModDynLU ModStat Modeled veg Dynamic — Land use

Modeled dynamic no fire ModDynNF ModStat Modeled veg Dynamic — —

Modeled dynamic no fire land use ModDynNF ModStat Modeled veg Dynamic — Land use

Modeled dynamic full fire ModDynFire ModStat Modeled veg Dynamic Fire

Modeled dynamic suppressed fire ModDynFS ModStat Modeled veg Dynamic Suppressed —

Modeled dynamic suppressed fire land use ModDynFSLU ModStat Modeled veg Dynamic Suppressed Land use

https://doi.org/10.1371/journal.pone.0201680.t002
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steps, we then summed the total area predicted suitable. In addition to the area predicted suit-

able for fires, we calculated the mean probability of all or large fires for all scenarios by sum-

ming the total predicted probabilities across all grid cells then dividing by the number of cells

in the map.

To characterize the detailed effects of modeled vegetation and related processes on large

fire probability, we compared NoVeg fire probabilities with those from three scenarios with

vegetation (WithVeg) ModStatFireLU, ModDynFireLU, and ModDynLU for each of the three

time periods and each climate future. Difference maps were produced by subtracting NoVeg

probabilities from each of the WithVeg scenarios. Differences were tabulated for each combi-

nation of: vegetation type, time period, scenario, climate future. Aggregate distributions of

probability differences were plotted by vegetation type for each climate future.

Results

Climate and vegetation modeling results

Over the entire region, compared to historical values, CNRM projected increases in annual and

summer precipitation throughout the 21st c. with a maximum annual increase of 42% at the end

of the century (S2 Table). MIROC, on the other hand, projected slightly higher annual precipi-

tation initially followed by lower precipitation, with a decrease of 17% by the end of the century,

although summer precipitation was projected to increase. These patterns were generally consis-

tent across elevations. Minimum temperatures were projected to rise by several degrees for both

scenarios over the 21st c. for all elevations, with end of century CNRM rises being 0.4, 0.16, and

0.76 greater than MIROC’s for the full study area, elevations less than or equal to 1000 m, and

elevations greater than 1000 m, respectively. Climatic water deficit (CWD) was also projected to

increase by the end of the century for both scenarios and across elevations, with CNRM rising

less compared to MIROC (11% and 24% for CNRM and MIROC, respectively, over the whole

area). CWD initially declined for CNRM at all elevations before increasing.

After reclassification of broad vegetation types, there was 73% agreement between MC2

baseline and LANDFIRE vegetation maps. Compared with LANDFIRE, MC2 vegetation had

more shrubland in the Central Valley and Cascade foothills, with less nonflammable area in the

Central Valley and less mixed and broadleaf cover at lower elevation. MC2 baseline had more

mixed and broadleaf ranging higher into the Cascade foothills where needleaf dominated under

LANDFIRE. Shrubs were more present in the northwestern portion of the study region under

MC2 versus LANDFIRE. MC2 delineated grasslands only in areas recovering from simulated

timber harvest while LANDFIRE mapped grassland along the edges of the Central Valley.

For scenarios with vegetation change, there were large differences between those with fire

and those without, with substantial differences already apparent by 2010, after running the

simulations with different treatments from 1895 (Fig 2). For example, under the with-fire sce-

narios (ModDynFSLU and ModDynFire), the study region was dominated by shrubland to

the near exclusion of all other classes, except nonflammable for ModDynFSLU. Under the no-

fire scenarios (ModDyneNFLU and ModDynNF), the region was dominated by a combination

of needleleaf and mixed and broadleaf forests. Generally, CNRM projected more mixed and

broadleaf forest than MIROC, which had greater needleaf forest in the no-fire scenarios and

greater shrub in the with-fire scenarios.

Maximum annual carbon in standing dead grass (Fig 3) was highest in the Central Valley

portion of the study area in the land use change scenarios (ModDynFSLU and ModDynN-

FLU), and this was greater under CNRM than under MIROC. It was also somewhat higher in

the western portion of the study in the with-fire scenarios, with larger areal extent under

MIROC but higher values with CNRM.
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Carbon in above ground dead wood (Fig 4) was much higher in without-fire scenarios than

with-fire and was generally higher under CNRM than MIROC. Also, it was much higher at

higher elevations. Values for live woody carbon (leaves, boles, branches, and roots) (Fig 5) fol-

lowed similar patterns as those for aboveground dead wood.

Baseline fire maps and models

The three baseline scenarios for all fires were similar (Fig 6A). In all three, distance to roads

was the most important explanatory variable, with fires more likely to occur in close proximity

to roads. The next two top-ranking variables were proximity to development, a negative

Fig 2. Baseline and projected future vegetation type from MC2 runs for selected scenarios with a) Baseline and b)

CNRM and c) MIROC climate futures.

https://doi.org/10.1371/journal.pone.0201680.g002
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relationship, and temperature seasonality, with fires more likely to occur with intermediate

variation in seasonal temperature. Cooler summer temperatures and lower-percentage slopes

were also moderately important. In the two baseline scenarios that included vegetation (Map-

Stat with LANDFIRE and ModStat with modeled vegetation), the vegetation variables were

among the lowest-ranking in importance of explanatory variables. The mean cross-validated

AUC for all three baseline scenarios was 0.64.

The baseline scenario variable importance for large fires was similar across non-vegetation

explanatory variables, although the most important variables for large fires were dissimilar to the

ones important for all fires (Fig 6B). The most important non-vegetation variables for large fires

included low-moderate summer precipitation, steep slopes, intermediate distance to development,

Fig 3. Maximum annual carbon in standing dead grass from MC2 runs for selected scenarios with a) Baseline and b)

CNRM, and c) MIROC climate futures.

https://doi.org/10.1371/journal.pone.0201680.g003
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and moderate-to-high climatic water deficit. Temperature variables were much less important

than precipitation variables. For the baseline scenarios with vegetation included as explanatory

variables, vegetation was either the most important (MapStat) or second-most important (Mod-

Stat) variable in the model. If the three vegetation variables are summed in ModStat, then vegeta-

tion was the most important variable for that scenario as well. The mean cross-validated AUC for

the large fire baselines was 0.75 for NoVeg, 0.79 for MapStat, and 0.76 for ModStat.

Area and probability of fires under alternative future scenarios

All fires. For the all fires projections, there was a clear separation of the NoVeg and Map-

Stat scenarios from the scenarios that incorporated modeled vegetation as input variables.

Fig 4. Mean annual carbon in aboveground dead wood from MC2 runs for selected scenarios with the a) CNRM, and

b) MIROC climate futures.

https://doi.org/10.1371/journal.pone.0201680.g004
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Specifically, there was larger overall predicted area suitable for NoVeg and MapStat for both

climate scenarios than there was for scenarios with modeled vegetation (Fig 7). This difference

among scenarios was so large that by end-century (2070), there was a projected increase in

suitable fire area for NoVeg and MapStat under the CNRM scenario, but the opposite was true

using modeled vegetation variables, where fire area was projected to decline (Fig 8). Opposite

trends in direction of change were also apparent by the mid-century (2040) for the MIROC

scenario. Differences among the modeled vegetation scenarios were subtle, although the sce-

narios where land use was explicitly modeled resulted in slightly lower predicted area suitable

(i.e., in ModDyn vs ModDynLU and in ModDynFS vs ModDynFSLU) (Fig 7).

Fig 5. Mean annual carbon in live woody carbon (leaves, boles, branches, and roots) from MC2 runs for selected

scenarios with the a) CNRM, and b) MIROC climate futures.

https://doi.org/10.1371/journal.pone.0201680.g005
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While the projection of larger overall area in the NoVeg and MapStat scenarios was consistent

across time periods and climate scenarios, there were also clear differences in overall projected

change in fire activity depending on climate scenario. The predicted suitable area for all fires was

slightly higher in CNRM than MIROC for baseline and mid-century projections, but the area

projected suitable under MIROC for end-century was substantially lower than for CNRM, to the

point that there was a projected decline in fire for all scenarios (Figs 7 and 8). The mean land-

scape-scale probability of large fires was projected to follow a similar trend under the climate sce-

narios, such that the end-century (2070) MIROC projections not only resulted in lower total

suitable area predicted, but the probability of fire in that area was also lower (Fig 9).

Fig 6. Relative variable importance of explanatory variables for statistical models of a) all fires and b) large fires in the

Butte Plumas study area for the three baseline scenarios (1980–2010), including Baseline (no vegetation), MapStat

(LANDFIRE existing vegetation type) and ModStat (vegetation type output from dynamic model).

https://doi.org/10.1371/journal.pone.0201680.g006
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Large fires. The biggest consistent difference in terms of area predicted suitable for large

fires was that the three scenarios that accounted for dynamic wildfire resulted in lower area

suitable than all other scenarios (Fig 7). When dynamically modeled vegetation was included

without fire or land use change (ModDyn), the predicted suitable area for large fires was the

largest among scenarios in all time periods and both climate scenarios, except for end-century

(2070) MIROC, where it was second highest. The other two no-fire scenarios using input from

the DGVM (ModStat and ModDynLU) also had relatively higher predicted suitable area for

large fires than the scenarios without vegetation (NoVeg) or with the static map of existing

vegetation (MapStat), except in MIROC mid- and end-century, where MapStat scenario

Fig 7. Area predicted suitable for all and large fires for eight vegetation scenarios, three time steps (baseline, mid-

century and end-century) and two climate scenarios. Scenario abbreviations are provided in Table 2.

https://doi.org/10.1371/journal.pone.0201680.g007

Fig 8. Projected change in suitable area from 2010–2040 and 2010 to 2070 for all and large fires for eight

vegetation scenarios and two climate scenarios. Scenario abbreviations are provided in Table 2.

https://doi.org/10.1371/journal.pone.0201680.g008
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resulted in equal or higher suitable area. As with all fires, the mean probability of fires across

the landscape was similar in rank order of.

For the CNRM climate scenario, the projected suitable large fire area increased over time

for all vegetation scenarios, mostly in proportion to the total predicted suitable area (Fig 8).

There was a larger increase in suitable area projected by mid-century (2040), which slightly

diminished by end-century (2070). When projected using the MIROC climate scenario, there

were different trends in projections depending upon the vegetation scenario, which did not

necessarily follow the rank order of total area predicted suitable. In particular, despite the fact

that the dynamic fire scenarios consistently had less total area predicted suitable for large fires,

the projected decline over time was lower for these scenarios than all but the MapStat scenario

(the only projected to increase) by mid-century. Yet, by end-century, the dynamic fire scenar-

ios (and MapStat) were projected to experience an increased trend of suitable fire area, which

was opposite to those without fire.

Vegetation versus no vegetation for large fires. For both the CNRM and MIROC, prob-

ability differences in the Central Valley are relatively consistent across scenarios with probabil-

ities generally lower in the early 21st c., lower to unchanged in the mid 21st c., and unchanged

in the late 21st c. (Fig 10).

In the Sierra Nevada foothills and mountains, the ModStatLU and ModDynFSLU scenarios

fire probability is generally lower under the CNRM climate future and in the early and mid

21st c. under the MIROC climate future (Fig 11). Under the same scenarios, MIROC exhibits a

mix of higher and lower probability in the late 21st c. In the same region, fire probability is gen-

erally lower for the ModDynFireLU scenario all time periods and both climate futures.

Cumulatively, across time periods, climate future, and vegetation scenario combinations,

needleleaf and mixed forest vegetation types were more strongly associated with higher fire

probability than lower versus NoVeg, with aggregate mean probability changes of 0.005 and

0.014 respectively (S3 Table and Fig 11). Under several of the combinations, however, each

yielded a lower fire probability versus NoVeg. Grass yielded a lower aggregate probability ver-

sus NoVeg, -0.009, but yielded a higher probability in 11 of 18 combinations. Shrub and

Fig 9. Mean landscape probability of fire for all and large fires for eight vegetation scenarios, three time steps

(baseline, mid-century and end-century) and two climate scenarios. Scenario abbreviations are provided in Table 2.

https://doi.org/10.1371/journal.pone.0201680.g009
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nonflammable yielded the largest lower probabilities versus NoVeg, -0.024 and -0.029 respec-

tively. Each of these was lower than NoVeg in all combinations.

Fig 10. Spatial distribution of large fire probability changes by time period, and scenario for a) CNRM and b) MIROC

climate futures. Results were calculated by subtracting NoVeg results from those for each of the vegetation scenarios.

https://doi.org/10.1371/journal.pone.0201680.g010

Future fire probability and vegetation

PLOS ONE | https://doi.org/10.1371/journal.pone.0201680 August 6, 2018 17 / 23

https://doi.org/10.1371/journal.pone.0201680.g010
https://doi.org/10.1371/journal.pone.0201680


Discussion

Statistical-correlational models and maps of fire probability are widely used for policy and

management decisions, and this study suggests high sensitivity to the treatment of vegetation

as a predictor variable, particularly for large fires. Depending on the source of vegetation data

and GCM, some models resulted in opposite predictions of directional trends in the extent

and probability of future fire. This sensitivity was largely due to the high relative importance of

vegetation-related variables in the baseline models and the large amount of vegetation change

predicted in the vegetation simulations, particularly those that incorporated wildfire.

Compared to the model without vegetation, the models with the strongest differences in

predictions were those that included vegetation dynamics, particularly when there were large

changes in nonflammable and shrub vegetation types. For nonflammable vegetation, which

primarily increased in the land use scenarios, this is virtually tautological, as the statistical

model weighted this strongly towards a low fire probability.

The largest projected declines in large fire probability were associated with increased shrub

vegetation, whereas areas with projected increased fire probability were associated with needle-

leaf and mixed forested areas. Both of these effects are attributable to the effect of fire on vege-

tation dynamics. The high frequency and intensity of fire that were simulated without fire

suppression, and to a lesser extent with fire suppression, were sufficient to replace forests with

shrublands throughout much of the Sierra Nevada portion of the study area.

While these projections of vegetation change are substantial, they are also reasonable, as

large-scale vegetation type conversion from forest to shrubland with increased high-severity

fire is consistently predicted in other studies in the region [65–66]. The lower probability of

large fires in models with simulated dynamic fire is also consistent with the well-understood

self-limiting effect of wildfire on subsequent fire activity in the Sierra Nevada [67]. Despite the

realistic potential for vegetation change to result from increased large-fire activity, the timing

of the simulated change here is clearly hypothetical for 2010. That is, because we initiated the

simulations with different fire treatments beginning in 1895, the simulated effects on vegeta-

tion were already apparent by 2010. However, given that fire suppression effectively mini-

mized large fire activity in the 20th century, the simulation results with no fire better reflect

what the current landscape actually looks like.

Another effect of simulated wildfire on resulting large fire probability was via the production

of dead wood, which had a high permutation of importance in the baseline model that included

it. When wildfire and vegetation dynamics were simulated, dead wood tended to be lower on

Fig 11. Distribution of large fire probability differences between NoVeg and three scenarios with vegetation

(ModStatFSLU, ModDynFSLU, and ModDynNFLU) across all time periods and both climate futures for a) CNRM

and b) MIROC climate futures. (Curves are normalized by vegetation type such that the area under a single curve sums

to 1.0).

https://doi.org/10.1371/journal.pone.0201680.g011
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the landscape, thereby reducing the likelihood of its effect on subsequent fire probability. Con-

versely, when fire was not explicitly simulated, forests grew and expanded. With this persis-

tence, eventual mortality due to climate stress and senescence produced substantial dead wood

that in turn increased future fire probability. The higher change in fire probability associated

with mixed forests versus needleleaf forests is attributable to the warmer, drier conditions under

which mixed forests grew and thereby affected fuels. Therefore, explicitly accounting for vegeta-

tion through a dynamic model affects both fuel abundance and condition.

It has been argued that water balance indices derived from climate variables, particularly

climatic water deficit (CWD) and actual evapotranspiration (AET), may indirectly account for

the potential changes in vegetation that result from climate change, and can thus serve as vege-

tation proxies in models predicting future fire probability. These assumptions are rooted in a

robust literature relating AET with biomass [68] and CWD with drought, vegetation distribu-

tions, and fire [50, 69–70]. These variables have also been significantly related to geographical

patterns of fire at broad scales [28,29,71].

We considered both of these variables in our experiment, although AET was highly corre-

lated with other climate variables that had better predictive performance, so we only retained

CWD and those variables. Nevertheless, CWD did not end up having substantial variable

importance. If CWD and AET sufficiently accounted for vegetation, then models with addi-

tional vegetation variables would be expected to provide similar predictions. However, our

models with maps of vegetation type and dynamics clearly resulted in different conclusions

than the models only using climatic vegetation proxies.

This means that, in our study area, vegetation variables provided additional information

that was not accounted for with water balance indices and climate. One of the largest factors

that our models accounted for was the effect of dynamic wildfire on fuels, which cannot be

predicted by climate variables alone, as other biophysical and anthropogenic factors influence

fire and subsequent fuel patterns [17]. Mapped vegetation types may also confer additional

information because plant species’ and community distributions, i.e., the realized niche, are

determined by more than just climatic effects on physiological response, e.g., they also result

from factors such as inter- or intra-specific competition [10]. A final consideration is that

prior studies relating CWD and AET to fire patterns have been conducted across larger spatial

extents, which may suggest that the effect of these variables is scale-dependent.

Given that the overall performance of our models, reflected in the AUCs, was only moder-

ate to good, there is no way to ascertain which projections of fire are most feasible. There was

inherent uncertainty in all of the vegetation variables we considered, including the LANDFIRE

map of existing vegetation. While this map may better reflect what is currently on the ground,

given that the MC2 vegetation type maps resulted from model simulations beginning in 1895,

LANDFIRE has been shown to differ from other maps of existing vegetation [72], and mapped

vegetation types in general always connote some level of uncertainty [73].

Assumptions implicit in process-based vegetation models, such as MC2, reflect uncertainties

in the processes and drivers of vegetation dynamics. These uncertainties are one of the strongest

arguments against the inclusion of vegetation into fire prediction models. However, if, as we

have shown, vegetation dynamics influence fire probabilities, these uncertainties are real and

their implications should be embraced. While excluding these uncertainties may produce mod-

els with greater precision, those models will fail to reflect their own underlying uncertainty.

Decisions made based on those models cannot consider the full range of possible futures.

The appropriate scale and complexity of fire modeling within DGVMs is an open question

[31]. In addition to showing the value of informing statistical fire probability modeling from

vegetation modeling results, this study raises the possibility of integrating statistical fire proba-

bility modeling within process-based vegetation models. How to best combine these two

Future fire probability and vegetation

PLOS ONE | https://doi.org/10.1371/journal.pone.0201680 August 6, 2018 19 / 23

https://doi.org/10.1371/journal.pone.0201680


approaches is a question with rich potential for exploration. Nevertheless, omitting vegetation

dynamics entirely could have large implications for management decisions based on statistical

projections of future fire activity.
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