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Executive Summary

The United States Department of Agriculture’s Conservation Reserve Program (CRP) is a federally
funded conservation program, whose long-term goal is to re-establish valuable land cover to improve
water quality, prevent soil erosion, improve carbon sequestration, and reduce loss of wildlife habitat.
This Farm Service Agency-administered program works with farmers and landowners to implement
conservation management practices on enrolled lands, with paid contracts ranging from 10 to 15
years in length.

The USDA's CRP has successfully improved the conservation value of private lands; however, the
program currently lacks spatially explicit information on land cover and vegetation within
CRP-enrolled tracts. Currently, there are over 46,000 CRP contracts in the state of Mississippi alone,
making on-the-ground data collection difficult due to the time, resources, and expertise necessary to
conduct field vegetation surveys over such extensive holdings. In partnership with the USDA FSA
program, the Conservation Biology Institute (CBI) piloted a predictive modeling approach for forested
lands in Mississippi participating in the CRP, employing the nuanced relationships between satellite
imagery indices, enviro-climatic data, and existing georeferenced vegetation survey data (from
USDA's Forest Inventory Assessment) to assess the potential for remote sensing technology to
enhance CRP program outcomes.

In this pilot project, CBl initially developed predictive maps of tree height, tree density, biomass, basal
area, and forest type using Random Forest machine learning models. Numerous satellite-derived
indices from the European Space Agency’s (ESA) Sentinel-1 and Sentinel-2 sensors, in addition to
soils and topography data, were used as predictor inputs. We then refined these predictive models,
focusing primarily on biomass improvements, by implementing new methods for processing
Sentinel-1 imagery on the cloud computing platform Google Earth Engine (GEE); significantly updating
model code; and incorporating preliminary data products derived from NASA's spaceborne LiDAR
mission - the Global Ecosystem Dynamics Investigation (GEDI). We refined the GEDI LiDAR-derived
data products and included them in our models, and overall accuracy for the four forest regression
models ranged from 57% to 91%. The Biomass model saw the greatest improvement in accuracy with
the R2 increasing by 8%, from 49% to 57%. The Basal Area and Tree Height models both had minor
1-2% increases in accuracy, while the Tree Density model had no improvement. The Forest Type
classification model had a negligible improvement in overall accuracy, however, the
Elm/Ash/Cottonwood class increased in accuracy by ~6%, from 64% to 70%.

The preliminary versions of mapped forest characteristics (without GEDI-enhancements) have been
integrated into an easy-to-use online decision support tool, also developed by CBI, that provides
USDA's staff and private landowners an opportunity to explore maps and metrics for land enrolled in
the CRP. The tool provides access to pertinent spatial information for CRP tracts, as well as the ability
to summarize statistics, compare metrics, and download reports for tracts across counties and
watersheds.

The new GEDI data products, which are in their early stages of development, combine global GEDI
LiDAR measurements with Landsat satellite imagery to provide wall-to-wall estimates of global
canopy height. Currently there are large gaps in spatial coverage, but these will get filled as more
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GEDI-based imagery is processed and updated. Incorporating these products as they become
available into our models will increase accuracy in predicted forest metrics.

There are several pathways for future improvement and refinement of forest modeling techniques.
Alternative approaches to machine learning, such as gradient boosting algorithms, may offer
increased performance over the currently employed Random Forest method, given the large quantity
of FIA training data available and the complex nature of forest remote sensing. Migrating additional
workflows to GEE presents an opportunity to overcome current data processing limitations by
leveraging distributed, cloud computing power, thus offering potential to improve data resolution and
gain more information from input variables. Google Earth Engine also offers a rich, multi-petabyte
catalog of satellite imagery, which would readily allow us to test additional value added by different
sensors and higher resolution imagery. Lastly, criteria for filtering and selecting FIA plots could be
revisited to increase the quantity of training data, which may improve model performance.

Our mapped predictions of forest metrics provide a baseline for characterizing forests within CRP
tracts in Mississippi and lay a foundation for quantitatively measuring the success of conservation
practices over time. Bringing this and other key data together in the multi-faceted online CRP tool
allows relevant information to be analyzed, shared, and downloaded by USDA leadership and CRP
managers. Future expansion of analytical and online tool functionality will provide additional
information to help guide strategic management actions on existing CRP holdings and to prioritize
new enrollment in the CRP. The Conservation Biology Institute’s suite of powerful products rolled into
an accessible online tool allows CRP to leverage these components to implement cost-effective and
scientifically sound decision-making.

@
CBI
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1. Introduction

1.1 USDA CRP Program

The United States Department of Agriculture’s Conservation Reserve Program (CRP) is a federally
funded land conservation program, whose long-term goal is to re-establish valuable land cover to
improve water quality, prevent soil erosion, improve carbon sequestration, and reduce loss of wildlife
habitat. This Farm Service Agency-administered program works with farmers and landowners to
implement conservation management practices on enrolled lands, with paid contracts ranging from
10 to 15 years in length.

The USDA's CRP has successfully improved the conservation value of private lands, however, the
program currently lacks spatially explicit information on land cover and vegetation within
CRP-enrolled tracts. This lack of data creates challenges for program managers and landowners to
characterize landscape conditions and to quantitatively measure the benefits of CRP practices over
time. Currently, there are over 46,000 CRP contracts in the state of Mississippi alone, making
on-the-ground data collection within CRP plots difficult due to the time, resources, and expertise
required to conduct these types of field vegetation surveys. However, recent advances in remote
sensing technology offer an alternative means to measuring and monitoring vegetation cover (Xie et
al., 2008; Ustin and Middleton, 2021). Predictive modeling approaches are promising means of
creating spatially continuous maps of vegetation by employing the nuanced relationships between
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satellite imagery indices, enviro-climatic data, and existing georeferenced vegetation survey data.
CBI's CRP Phase | and Phase Il pilot projects use a predictive modeling approach to assess the
potential for remote sensing technology to quantify land cover in a cost-efficient manner and to
enhance CRP program outcomes.

1.2 CRP Phase I

The purpose of CRP Phase | was to assess the application of the latest remote sensing technology to
enhance forest inventory analysis, forest management, and characterize economic value of lands
enrolled in the Conservation Reserve Program. For this analysis, CRP lands of interest were required
to have participated for at least eight years and to be located in areas with a substantial
concentration of acres enrolled under conservation practices devoted to multiple bottomland
hardwood and other tree species (i.e., CP03, CP03A, CP11, CP22, CP31, and CP40) (Appendix A1).

We employed indices derived from Sentinel-1 synthetic aperture radar (SAR) data and Sentinel-2
multispectral imagery in Random Forest models to predict key forest metrics. Processing and
downloading Sentinel imagery was computationally and time-intensive. The Sentinel-1 and Sentinel-2
data was downloaded through the Copernicus Open Access Data Hub. In total, ~2 terabytes of
imagery (3,703 scenes) were downloaded, which took about 39 days to complete. For Sentinel-1, 591
SAR scenes (~560 gigabytes) were downloaded, taking approximately 11 days to complete. To
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handle the large data volume and requisite pre-processing, CBI built a custom Linux server with 25 GB
of RAM, and 6TB of storage. Despite this computing power, all Sentinel imagery was processed at 20
meter resolution, rather than 10 meters, since the higher resolution data would have taken several
months of continuous processing on the custom server.

For the Phase | scope of work, we created predictive maps of tree height, tree density, biomass, basal
area, and forest type for Mississippi. These spatial datasets lend insight into the potential forest
characteristics of lands participating in the CRP Bottomland Hardwoods Initiative and lay a
foundation for quantitatively measuring the success of conservation practices over time. The
mapped forest characteristics were also integrated into an easy-to-use online decision support tool,
developed by the Conservation Biology Institute. This tool provides USDA staff and private
landowners an opportunity to explore maps and metrics for land enrolled in the CRP. It provides
access to pertinent spatial information for CRP lands, as well as the ability to summarize statistics,
compare metrics, and download reports for CRP tracts across counties and watersheds. Our
satellite-derived maps of forest characteristics provide a baseline for characterizing vegetation within
Mississippi CRP tracts and offer the opportunity to create metrics for quantifying landscape
conditions. The CRP tool also allows relevant data to be analyzed, shared, and downloaded through
CBlI's online mapping platform, Data Basin. Future expansion of online tool functionality will provide
additional species and ecological information to help guide strategic management actions on
existing CRP holdings and to prioritize lands for new enroliment in the Conservation Reserve
Program.

1.3 CRP Phase Il Upgrades

In CRP Phase I, we improved methods for processing Sentinel-1 data, significantly refined the model
code, and experimentally incorporated GEDI spaceborne LiDAR-derived data products into the existing
forest models, with a primary focus on improving biomass predictions. Firstly, the processing for
Sentinel-1 SAR data was shifted to Google Earth Engine (GEE). Google Earth Engine is a cloud
computing platform that hosts a multi-petabyte catalog of remotely sensed data, provides a suite of
data processing functionality to efficiently query and process imagery, and offers a variety of
analytical tools for image classification, change detection, time series analysis, and machine learning.
In Phase |, computing Sentinel-1 textural indices was extremely computationally and time intensive;
however, GEE's highly scalable computations, cloud-based resources, and data catalog facilitated
faster processing and allowed for various methodologies to be tested over a short period of time in
Phase Il. The workflows for Random Forest modeling and input variable zonal statistic calculations
were also improved via R scripting (Appendix A2). Subsequently, these updates enabled us to readily
add new predictor variables, such as preliminary GEDI-derived global canopy height data, to the
models. These workflow upgrades also position us well to incorporate more refined versions of GEDI
data products, currently in early stages of development, upon their release over the next eighteen
months.

Mississippi CRP Forest Remote Sensing 7
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2. Background

2.1 Advances in Mapping Forests with Remote Sensing

Over the past ten years, forest remote sensing has made major strides in the quantity and diversity of
freely available, high resolution satellite imagery, as well as huge advances in accessibility of
cloud-computing processing platforms. A cultural shift toward data sharing and collaborative work
has contributed to increased access to code and resources to implement cutting edge analysis
techniques as soon as they become available. In years past, remote sensing efforts were constrained
by local computing power, costly software licenses, and expensive satellite imagery. Now,
advancements in geospatial data processing facilitated by the advent of distributed cloud computing,
coupled with the emergence of multiple, freely available sources of satellite imagery at relevant
spatiotemporal resolutions offer new opportunities for earth observation relevant to the USDA's
Conservation Reserve Program needs.

Over the past fifty years, NASA's Landsat program has been the longest record of data collection in
earth observation. The Landsat mission produced the first imaging satellite to collect earth
observation data based upon the spatial, spectral, and temporal characteristics of landscapes (Ustin
and Middleton, 2021). The Landsat program, in continuous operation from the 1970s to the present,
has created opportunities to track land cover and land use change over a large temporal scale. While
Landsat provides data on almost 50 years of forest conversion, these optical, multispectral datasets
provide less direct information about the structural metrics of forests, such as the quantity of carbon
stored in vegetation. However, Landsat’s legacy led to innovations in remote sensing that laid a
foundation to execute more advanced earth observing satellite missions, including those to monitor
vegetation structure, via deployment of synthetic aperture radar and spaceborne LiDAR, like GEDI.

2.2 Satellite Data Overview

2.2.1 Multispectral

In recent years, increased satellite coverage of near-global remotely sensed data has become
available for mapping land cover in areas without existing field survey data, and these data sources
have proven crucial for a variety of ecological applications (Ustin and Middleton, 2021). When
evaluating remotely sensed data sources for a given application, the spatial resolution, temporal
cadence of collection (i.e., return interval), and spectral characteristics of the sensor should all be
considered. For optical imagery, NASA satellites offer a generous historical archive - a wide array of
spectral characteristics relevant to vegetation mapping at a range of spatial resolutions, from
low-resolution (250 m) Moderate Resolution Imaging Spectroradiometer (MODIS) to
medium-resolution (30 m) Landsat archive available from 1972-present. The recent addition of the
European Space Agency’s (ESA) Sentinel-2's higher resolution (10-20 m) multispectral imagery
archive is particularly valuable, with various products available from mid-2015 onward (ESA
Copernicus, 2020).

Mississippi CRP Forest Remote Sensing 8
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2.2.2 Synthetic Aperture Radar (SAR)

In addition to optical imagery, ESA's Sentinel-1 sensor offers synthetic aperture radar data, which is
not hindered by cloud cover and can be used to measure land surface texture (ESA Copernicus,
2020). This suite of sensors provides a systematic collection of medium-spatial resolution, remotely
sensed data over time, which opens up possibilities for continuous monitoring of vegetation and
enables the capture of time-specific snapshots of vegetation type and condition.

2.2.3 Spaceborne LiDAR

Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne LiDAR instrument that takes
high-resolution observations of the earth’s surface. Created to take a snapshot of biomass and
canopy height of the world’s temperate and tropical forests, the GEDI sensor was launched in 2018
from Cape Canaveral, Florida on a planned 24-month mission. The mission will sample ~4% of the
earth’s surface and, as of September 2021, GEDI has captured ~5 billion of the expected 10 billion
cloud-free observations (Duncanson, 2021). Once the mission is complete, the data collected by GEDI
will represent the most accurate sample of forest canopy height, canopy structure, and biomass at a
global scale. GEDI's measurements of tree height and biomass have been validated by the scientific
community using airborne LiDAR scanning observations from around the world.

Methods for estimating biomass have evolved from raw field measurements to local LiDAR, and now,
to spaceborne LiDAR like GEDI. Before remote sensing methods were developed to estimate biomass,
aboveground biomass estimation was dependent on destructive sampling techniques and allometric
equations, or estimation via volumetric methods (Lu, 2006). However, these types of allometric
models are known to have high uncertainties due to their reliance on in-situ field measurements, and
high model uncertainty depending on the specific allometric model employed (Duncanson et al., 2017,
Stovall and Shugart, 2018). In the early 2000s, models using multispectral remotely sensed data, such
as Landsat, emerged as a popular method for biomass estimation. However, spectral imagery adds
limited value to biomass estimation, since earth observation is frequently hindered by cloud cover
and it provides minimal detail about forest structure. In fact, researchers
found that textural information in an image was more important than
spectral information for predicting biomass in areas with complex
vegetation stand structure (Lu, 2006). Due to the limitations associated
with obtaining cloud-free spectral imagery in many regions of the world,
radar and LiDAR have become the most feasible methods for collecting
earth observations, irrespective of weather conditions. LiDAR is an
excellent method for characterizing the vertical structures of forests,
including canopy height, forest volume, and aboveground biomass (Man
et al., 2014). Until recently, LIDAR and radar sampling were expensive and =5
limited to local and regional scales. Fusing local LiDAR with SAR provided a way to upscale blomass
estimation over larger spatial scales (Wulder et al., 2012). In the present day, the advent of the GEDI
mission ushers in a new era of remotely sensing forest structure, including metrics of canopy height,
leaf area index, and biomass, at a global scale (University of Maryland, GLAD, 2021).
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GEDI data will serve as a snapshot in time to set a baseline measurement of carbon to inform future
carbon losses via deforestation and land conversion. GEDI's precise sampling of forest canopy height,
canopy vertical structure, and surface elevation will greatly advance our understanding of carbon and
water cycling processes, biodiversity, and habitat structure (Dubayah et al., 2020).

The GEDI mission has been approved for an additional extension and is now expected to continue
recording observations through the end of 2022. The GEDI sensor is located on the Japanese
Experiment Module-Exposed Facility (JEM-EF) of the International Space Station. Further details on
the GEDI mission and sensor are included in Appendix A3.

3. Methods

3.1 Workflow Overview for Modeling

Our overall workflow to derive predictions from each of the forest metric models (Biomass, Basal
Area, Tree Height, Tree Density, Forest Type) consisted of processing FIA plot survey training data,
processing model input variables (satellite, topography, and soils), extracting model input variable
values at FIA plot locations, preparing data for modeling, conducting Random Forest modeling, and
lastly, visualizing model predictions as output raster images in the CRP tool (Figure 1).

Mississippi CRP Forest Remote Sensing 10
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Figure 1. Overview of CRP forest metric modeling workflow to derive predictions for Basal Area, Tree Height, Tree

Density, Biomass, and Forest Type.

3.2 FIA Field Survey Training Data

The Forest Inventory and Analysis Program (FIA) is a long-running U.S. Forest Service program that
collects, analyzes, and reports information on the status and trends of America's privately owned
forests. This information includes data such as the extent and spatial location of forests, the species,
size, and health of trees, total tree growth, tree mortality, and removals by harvest (“Forest Inventory
and Analysis National Program”, 2015). This information can then be used to evaluate wildlife habitat
conditions, assess the sustainability of ecosystem management practices, and support planning and
decision making activities. As of 1999, the FIA program shifted from a periodic survey to an annual
survey, and expanded the scope of their data collection to include an additional suite of attributes on
a subsample of their plots such as soils, understory vegetation, tree crown conditions, downed woody
material, and invasive species (“Forest Inventory & Analysis: What is Forest Inventory and Analysis?”,
2018). FIA plot location and data attributes for privately held lands are highly confidential due to
privacy concerns. Further details about FIA sampling design and plot survey design are available in

Appendix A4.
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Mississippi FIA data with georeferenced survey locations was obtained for the years 2014 - 2017
from the USFS Southern Research Station. Data were filtered so that forested areas had only one
condition class across each plot in order to exclude plots that were clear cut or misidentified as
forested due to human error or erroneous GPS coordinates. After filtering, a total of 2,090 FIA plots
were available for Random Forest model training and validation.

For the regression forest models (Biomass, Tree Height, Tree Density, and Basal Area), training and
testing data were pulled from 2017 FIA data, 2019 field data, and digitized plots of cropland, water,
and urban development, for a total of 980 observations (Appendix A5). This resulted in 686 training
points and 294 testing points when sampled with a 70% training, 30% testing data split.

In comparison, the Forest Type classification model used training and testing data pulled from 2014 -
2017 FIA data, 2019 field data, and digitized areas of cropland, water, and urban development. There
were a total of 2,338 data points used in this model, split 70% training, 30% testing.

3.3 Spatial Input Variable Processing

Spatial input variables were obtained from multiple data sources including Sentinel-1, Sentinel-2,
soils, topography, and a preliminary GEDI-derived canopy height dataset. Zonal statistics were
tabulated in R software for all input variables across each of the 2,090 FIA training plots, and digitized
plots of cropland, urban, and water areas.

3.3.1 Sentinel-1 and Sentinel-2

We used Sentinel-1 and Sentinel-2 data (Table 1) available through the European Space Agency
(European Commission's Copernicus Earth Observation Program). Due to local computing
constraints, all Sentinel imagery was processed at a 20-meter resolution.

Table 1. Spatio-temporal and radiometric resolutions of Sentinel-1 and Sentinel-2.

Sensor Spatla!I Temporal Radlomgtrlc Collection Start Date Surface Reﬂectance
Resolution Resolution Resolution Available
. Dual polarization April 2014 (Sentinel-1A)
Sentinel-1 10m 6 days (VV4VH) April 2016 (Sentinel-1B) October 2014 onward
Sentinel-2 10m,20 m 5 days Visual bands, NIR, - June 2015 December 2018 onward

red-edge, SWIR (TOA available)

Sentinel-1 imagery was acquired from the GEE data catalog (“Sentinel-1 SAR GRD: C-band Synthetic
Aperture Radar Ground Range Detected”, n.d.) for 2017-2019. The imagery was composited by month
for the full time period using four reducers: mean, maximum, minimum, and standard deviation (i.e.,
for January, the mean value would be an average across all three years of imagery). This produced a
total of 48 descriptive input variables. Next, the Sentinel-1 mean monthly composites were used as an
input to a gray-level co-occurrence matrix (GLCM) texture analysis within GEE to produce seven
indices (Haralick et al., 1973; Appendix A6; Table A6-1). The GLCM analysis used a 1x1 moving

Mississippi CRP Forest Remote Sensing 12



window function to aggregate the synthetic aperture radar information, identifying statistical
groupings and similarities amongst neighboring pixels.

Sentinel-2 multispectral imagery was downloaded through the Copernicus Open Access Data Hub.
Cloud cover and atmospheric effects were removed from the imagery and data were normalized to
Bottom-of-Atmosphere reflectance at 20 m resolution (Level 2A). The corrected imagery was then
combined into bi-monthly, seasonal (Leaf-off, Greening, Leaf-On, Senescence; Figure 2), and seasonal
difference mosaics using the Sen2Mosaic software.

Leaf Off Leaf-On Senescence

January February August September December

Figure 2. Figure of seasonal breaks for Sentinel-2 imagery and a time slice of deciduous tree phenology across
the months of the year. Time slice imagery courtesy of PhenoCam.

From each of these temporal and seasonal mosaics, sixteen vegetation indices were derived using
ESRI ArcGIS software and Python scripts (Table A6-2). These indices capture the spectral
characteristics of vegetation, helping differentiate forest types and predict vegetation characteristics
via Random Forest modeling.

3.3.2 GEDI Derived Global Canopy Height

We used a novel preliminary dataset of global canopy height for 2019 to incorporate 30-meter
resolution estimates of tree height into the forest models. The dataset, from Potapov et al., was
created using a fusion of GEDI LiDAR observations and Landsat imagery (2021). This fusion data
product provides wall-to-wall coverage, whereas GEDI data products have large gaps, spatially; recall
that GEDI is a global sample, not a census (Figure 3). Potapov et al. validated the global canopy
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height map with GEDI data and airborne LiDAR data observations. In this dataset prototype, there are
known issues related to GEDI data quality and the availability of Landsat optical time-series data. The
raw GEDI data have known errors on steep slopes where forest height is overestimated, and tall
buildings can be confounded with tree height in more suburban areas. This data fusion exercise was
a proof of concept to create an analysis-ready dataset, and the authors hope to resolve the canopy
height saturation problem for trees greater than 30 meters in height in future versions of this data
product. However, to temporarily patch the tree and urban building misprediction problem, we masked
all tree heights greater than 30 meters before incorporating this data into the forest models.
Mississippi does not have many tree species that can grow taller than 100 ft (30.48 m), thus this
masking was appropriate as a temporary resolution to the dataset'’s limitations.

GEDI L3 Mean Canopy Height  Potapov Canopy Height - 2019

-30

-25

|
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o

=15

{w) ybiay Adouen

[
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=0
Figure 3. GEDI L3 Gridded Mean Canopy Height (left) versus the Potapov Canopy Height in 2019 (right) coverage

in Mississippi. Note that the GEDI L3 data has many large gaps, while the Potapov data has wall-to-wall
coverage.

3.3.3 Soils and Topography Data

Soils variables describing soil composition, pH, drainage, and electrical conductivity, among others,
were extracted from the NRCS SSURGO soils dataset. Topographic variables including elevation were
obtained from the USGS National Elevation Dataset (NED) dataset. Variables such as elevation and
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soil composition (Table 2) are known to influence the distribution of different tree species and have
the potential to add value to the Random Forest models.

Table 2. Soils and Topography data sources and data variables.

Data Source Variable

Soil Percent Clay 0-150cm
Soil Percent Sand 0-150cm
Soil Percent Silt 0-150cm

Soil Organic Matter
SSURGO Soils Data
Soil Dominant Soil Drainage Class

Soil Presence of Hydric Components
Soil pH (1-to-1 Water)
Soil Electrical Conductivity
Elevation (meters)
Topography Data Slope (degrees)
Aspect (degrees)

3.4 Random Forest Modeling

The Random Forest modeling algorithm was used to estimate forest type, tree density, basal area,
tree height, and aboveground biomass of merchantable live trees across Mississippi forests. This
machine learning algorithm is designed to find and model patterns in data. More specifically, it's a
supervised ensemble method; an aggregation of individual models trained using known target
outputs and whose collective predictive power is greater than any constituent model (Brieman, 2001).
Random Forest algorithms have been used successfully with multispectral imagery, synthetic
aperture radar, and topographic and environmental variables to model all of the targeted forest
metrics. These models work well for applications in remote sensing as they are robust to overfitting,
which allow the models to be applied to making predictions outside the training data area. Random
Forest models are less sensitive to outliers compared to other methodologies and are nonlinear,
allowing them to work with high dimensional data (Belgiu and Dragut, 2016). We used the software
platform R and the “ranger” Random Forest R package (Wright et al., 2021), which is based on the
original “random forest” package from Breiman et al. (2018).

To evaluate the validity of modeled outputs, we performed a cross-validation assessment to
document the overall accuracy of each model, using an independent portion of the training data
withheld for this purpose. These accuracy metrics were then compared to the original forest
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modeling results from Phase | (Appendix A7). We assessed model accuracy using R? root mean
squared error (RMSE), and mean absolute error (MAE) metrics. A model’s R? provides a “goodness of
fit” measure for the predictions as compared to the observations on a scale of 0 to 1. For example, an
R? value of 0.5 indicates that the model’s predictions explain 50% of the variation in observations. In
comparison, the RMSE metric is the average deviation of the predictions from the observations. This
metric gives weight to large, rare errors in our predictions. RMSE is useful for understanding how well
the model is performing, in units of the output variable. The MAE metric is the average of the absolute
values of the errors, in units of the output variable. It tells us what size error we can expect from our
predictions on average. It is similar to RMSE, but does not weight the errors. Random Forest models
have natural variability in accuracy due to the random split of the testing and training datasets.
Therefore, averaging the model’'s R?, RMSE, and MAE over multiple model iterations informs the
model’s actual performance.

4. Modeling Results

4.1 Model Accuracy Assessment Comparison

The overall accuracy of the four regression forest models, with the inclusion of the preliminary GEDI
fusion data (Potapov Canopy Height), ranged from 57% to 91% (Table 3). The Biomass model saw the
greatest improvement in accuracy with the R? increasing by 8%, from 49% to 57%. The Basal Area and
Tree Height models both had minor 1-2% increases in accuracy, while the Tree Density model had no
significant improvements. Furthermore, the root mean squared error (RMSE) and the mean accuracy
error (MAE) decreased with the inclusion of the Potapov Canopy Height data in the Basal Area, Tree
Height, and Biomass models. The Forest Type classification model had a negligible 0.89%
improvement in overall accuracy, however, the EIm/Ash/Cottonwood class increased in accuracy by
~6%, from 64% to 70% (Table A7-1).

Table 3. Forest model improvements with Potapov (2021) Global Canopy Height GEDI fusion data. The Basal
Area, Tree Height, and Biomass models gained value from the Potapov data, while the Tree Density model
showed no improvement in the R.

Original Models Phase Il Models

Metric R2  RMSE MAE R2  RMSE MAE % Improvement in R?
Basal Area (square ft/acre) 0.66  32.53 2148 0.68 30.58 19.87 1.85
Tree Height (ft) 0.90 9.97 6.61 0.91 9.31 5.84 1.37
Tree Density (trees/acre) 0.67 59.25 37.91 0.65 65.06 41.47 No Improvement
Biomass (Dry Merchantable) 19 39919 54 2587474 0.57 35156.67 22666.64 7.45
(Ibs/acre)
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4.2 Model Variable Importances

The Biomass model was primarily driven by the RENDVI and ARI Senescence seasonal indices, which
provide spectral information about leaf pigmentation changes during autumn (Figure 4). The Potapov
Global Canopy Height data was found to be the sixth most important input variable on average. Other
variables of lesser importance included Greening NDRE and Leaf On ARI multispectral indices, as well
as the Sentinel-1 Minimum VV and Minimum VH SAR variables.

The Potapov Canopy Height data was found to be in the top six most important variables for
predicting biomass, basal area, tree height, and tree density, but was not found in the top fifty most
important variables for the Forest Type model. Variables composited by seasonality (Senescence,
Greening, Leaf-on, and Leaf-off) were the top three most important for multiple forest models
(Appendix A8). We found Senescence to be the most important seasonal variable for the Tree Height,
Tree Density, Biomass, and Basal Area models, while Greening was the most important for the Forest
Type model.

Variable Importance: Biomass Model

Multispectral Senescence RENDVI #3 4
Multispectral Senescence RENDVI #2 4
Multispectral Senescence ARI #1 4

Multispectral Senescence ARI #2

Multispectral Senescence NDVI A

Variable Importance

Global Canopy Height (Potapov 2021) 4 100

Multispectral Greening NDRE #1

0.75
Multispectral Leaf On ARI #2 4
) 0.50
Multispectral Leaf On ARI #1 4
0.25

Sentinel-1 Minimum VH (August) 1
May to June Mosaic - Band 05
Sentinel-1 Minimum VV (June)

Multispectral Senescence NDRE #1

Sentinel-1 Dissimilarity (VV) 4

Sentinel-1 Minimum VV (July) 1

=
b.
o

0.25 0.50 0.75
Normalized Mean Variable Importance

2
g
S

Figure 4. Chart of normalized mean variable importance for the fifteen most important variables, averaged
across five iterations of the Biomass model.
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5. Discussion & Conclusion

5.1 Outcomes - Increased Model Performance

Phase Il modeling saw model performance significantly improve in terms of processing efficacy,
runtime, and accuracy, and also saw the inclusion of a preliminary, novel GEDI-derived global canopy
height dataset. The Biomass model likely gained the most value from this dataset because forest
biomass is greatly influenced by tree height (Proulx, 2021). The Basal Area and Tree Density models
could likely gain more value from other GEDI-derived datasets that describe additional metrics of
vertical forest structure.

Our findings of increased model accuracy after inclusion of GEDI-derived data are in line with
promising results from other early studies that used GEDI to quantify forest structure and disturbance
(Spracklen and Spracklen, 2021; Guerra-Hernandez and Pascual, 2021). Since only a small proportion
of GEDI data are currently available from the total 10 billion cloud-free observations that the mission
plans to collect, the complete GEDI LiDAR dataset will likely add even more value to modeling CRP
forest characteristics.

5.2 GEDI Limitations

While GEDI shows promise for global tree height and biomass estimation, NASA's direct GEDI data
products have limitations due to the nature of the sensor and data acquisition methods. Because the
sensor is renting space on the International Space Station, the pattern and coverage of data collection
across the surface of the earth is entirely random, resulting in large gaps in coverage. These gaps can
be observed as no-data areas in both the footprint level and gridded products (Figure 3). As of now,
NASA has no plans to create a GEDI product with wall-to-wall coverage (i.e., coverage without gaps),
as GEDI was intended to be a survey, not a census, of the world’'s biomass (Healey et al., 2020).
However, independent researchers are tackling this limitation by combining GEDI with data from other
satellite sensors to create exciting data fusion products (Duncanson, 2021).

5.3 GEDI Fusion Potential

We anticipate new GEDI data fusion products will add subsequent value to the forest models that are
heavily influenced by forest structure or forest height. Given the 2-7% improvement in our R metrics
with inclusion of the GEDI-derived Global 2019 Canopy Height data from Potapov et al., refined GEDI
fusion datasets may add even more value (Appendix A9). While GEDI fusion data using optical
imagery like Landsat has been the most forthcoming, GEDI X SAR fusion datasets (e.g. TanDEMX and
GEDI fusion) will likely have greater potential because of the added structural information that SAR
provides. We also expect high-resolution GEDI fusion products, such as GEDI X Sentinel-2 maps of
canopy height and biomass, to be released in the next few years (Lang et al., 2021). Looking toward
the future, these GEDI fusion datasets might also act as a source for validating tree height and
biomass data to supplement field measurements from annual FIA surveys.
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6. Future Work

6.1 Model Refinements

In addition to inclusion of forthcoming GEDI-derived data fusion products, there are several areas
identified for future improvement and refinement of forest modeling techniques. Alternative
approaches to machine learning, such as gradient boosting algorithms, may offer increased
performance over the currently employed Random Forest method, given the large quantity of FIA
training data available and the complex nature of forest remote sensing.

Migrating additional workflows to GEE and utilizing its Python API presents an opportunity to
overcome current data processing limitations by leveraging distributed, cloud computing power, thus
offering potential to improve data resolution and gain more information from input variables. In
particular, computation of SAR textural indices could be improved, since source code for computing
more sophisticated SAR indices are now open source.

Google Earth Engine also offers a rich, multi-petabyte catalog of satellite imagery, which would readily
allow us to test additional value added by different sensors and higher resolution imagery, which
would allow us to test the potential additional value added by 10-meter resolution Sentinel imagery.
Lastly, criteria for filtering and selecting FIA plots could be revisited to increase the quantity of
training data, which may improve model performance.

6.2 Integration of Forest Mapping into the Online CRP Tool

Our mapped predictions of forest metrics provide a baseline for characterizing forests within CRP
tracts in Mississippi and lay a foundation for quantitatively measuring the success of conservation
practices over time. Bringing this and other key data together in the multi-faceted online CRP tool
allows relevant information to be analyzed, shared, and downloaded by USDA leadership and CRP
managers. Future expansion of analytical and online tool functionality will provide additional
information to help guide strategic management actions on existing CRP holdings and to prioritize
new enrollment in the CRP. The Conservation Biology Institute’s suite of powerful products rolled into
an accessible online tool allows CRP to leverage these components to implement cost-effective and
scientifically sound decision-making.
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8 Appendices

Al. CRP Forest Practices

Table A1-1. CRP forest practices and brief descriptions (USDA, 2018).

Conservation Practice Description
CPO3 Tree Planting
CPO3A Hardwood Tree Planting
CP11 Vegetative Cover, Trees Already Established
CP31 Bottomland Timber Establishment on Wetlands
CP40 FWP Aquaculture Wetland Restoration

A2. Random Forest Model & Code Info

To improve data extraction processing times, all variables from Sentinel 1 and 2, and other raster
datasets were tabulated for each FIA training plot using the ExactExtractR R package (Baston 2021).
The ExactExtractR package summarizes the raster values within each polygon. Unlike traditional
methods for calculating zonal statistics, the exact_extract function can even handle fractions of
raster cells that are covered by a polygon. This new package allowed us to retire the “trim mean”
function which previously excluded the top and bottom 20% of raster values from the summary mean
calculation. In addition, this R package is built upon a C++ framework which greatly improves the
processing time to extract data.

Second, to improve the clarity and readability of the existing model code, each model was
modularized to a separate script. The code for each model was reviewed and edited to become more
concise, which in turn improved the processing times for all models. These changes provide
additional benefits for future iterations of these models by improving the ability to incorporate new
data variables.

A3. GEDI Technical Details

GEDI has three lasers that take 8 beam transects that are spaced 600m apart, sampling a 25m
footprint every 60 meters along each transect (Figure A3-1). Four of the beams are full power lasers
that take the most accurate measurements, while the last four lasers are less powerful but provide
more coverage.
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Figure A3-1. The GEDI beam pattern consists of three lasers (Dubayah 2020).

GEDI'’s lasers fire pulses of near-infrared energy at the surface of the earth, where each pulse is
reflected by leaves, branches, and the ground within each 25 m laser footprint (Figure A3-2). The
returned waveform can be thought of as a histogram of reflecting surface heights that represent the
different layers of the forest canopy and the ground. The GEDI waveforms are processed to derive
metrics of canopy height, relative height, and ground elevation. Additional processing is applied to
extract metrics like leaf density, canopy cover, and aboveground biomass (Dubayah 2020). GEDI's
lasers are not able to see through clouds, which limits the ability to take observations in cloudy
regions of the world.
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Figure A3-2. The GEDI return waveform and pulse footprint (Dubayah et al. 2020).

A4. FIA Plot Surveying

The Forest Inventory Analysis (FIA) Program collects, analyzes, and reports information on the status,
trends, and condition of America’s forests (“Forest Inventory and Analysis National Program”, 2015).
This data includes the quantity and spatial location of forests, and metrics of vegetation cover
change, tree harvest, and regrowth. FIA plots are sampled following a national sampling design that
includes all forested land in all 50 States, plus all US territories. The FIA program covers all public and
private forest lands such as wilderness, National Parks, and National Forests.

A4.1 Survey Design

The FIA program has three main phases that make up the survey design:

Phase 1: Remote Sensing, is the aspect of data collection related to remotely sensed data in the form
of aerial photographs, digital orthoquads, and satellite imagery. A Phase 1 “photo point” is
characterized as forest or non-forest. A subset of the photo points are selected for field data
collection in Phase 2.

Phase 2: Forest Inventory, consists of one field sample site for every 6,000 acres. Field crews collect
data on forest type, site attributes, tree species, tree size, and overall tree condition on accessible
forest land.
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Phase 3: Forest Health, measures for a broader suite of forest health attributes within a subset of
Phase 2 sample plots. There is approximately one Phase 3 plot for every sixteen Phase 2 plots. The
forest health attributes that are measured include tree crown conditions, lichen community
composition, understory vegetation, down woody debris, and soil attributes. Soil samples are sent to
a laboratory for chemical analysis.

A4.2 Plot Design

An FIA plot consists of a cluster of four circular subplots spaced out in a fixed pattern within a
sampling radius. The plot provides a sampling frame for all Phase 2 and Phase 3 measurements.
Most tree measurements are taken within the subplots while seedlings, saplings, and other vegetation
are measured within the microplots.

Subplots are never reconfigured or moved after
siting. Plots may straddle more than one ‘condition
Phase 2/Phase 3 Plot Design class’ such as two different forest types, or a forest
o and a meadow. The forest service defines a
\ t ‘condition class’ as a specific combination of
@“h N attributes such as land use, forest type, stand age,
A N AN and other attributes which collectively describe a
/ *-\ \ homogeneous area. Every plot exists in at least one
| @ P condition class, and may include more than one. In
/ AN S the case that multiple condition classes are present
| | i on a plot, each condition class is described
LS N / separately. Forested condition classes are further
— - classified by the following characteristics: reserved

—— SRR { TAAmy el status, owner group, forest type, stand size class,

& Microplst BH M 207 m) radius

(") Annader plat 58.9 Rt (17.95 m) radius regeneration status, and tree density.
o Vepupte  abmtwe _ _
= SeMSampliog (petat campl) A4 .3 Sampling Intensity

= Dawn Waaidy Debris 2400 e { 7.52 m) transecis
' The FIA’'s sampling intensity is 20% of the plots in
Figure A4.2-1. The FIA plot design layout. each state, each year, achieved through a
federal-state partnership. The FIA program has a
national set of core measurements, including some
forest health variables collected on a subset of the plots (Burkman, 2005).
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A5. FIA Sample Data Summary Statistics

Table A5-1. Summary statistics for the 636 FIA plots (2017 and 2019) used for training and testing the Random
Forest models.

Variable Mean SD Min Max
Biomass (Dry Merchantable Ibs/acre) 80310.576 49343.643 138.359 302004.198
Basal Area (square ft/acre) 88.493 41.691 0.821 234.548
Tree Density (trees/acre) 164.463 92.535 6.018 559.678
Tree Height (ft) 60.877 13.349 15 104.267
Potapov (2021) Global Canopy Height (m) 18.57 5.393 0 28.619

Table A5-2. Count of FIA plot surveys from 2017 and 2019, versus digitized cropland, urban, and water plots used
in the Biomass, Tree Height, Tree Density, and Basal Area regression models.

Data Source N
FIA Plots 636
Digitized Cropland 200
Digitized Developed 100
Digitized Water 44
Total 980

Table A5-3. Summary statistics of FIA forest metric variables, and the Potapov (2021) Canopy Height variable
within FIA plots used for training and testing in the classification Random Forest model.

Forest Type Variable Mean SD Min Max
Potapov Global Canopy Height 19.193 3.679 0 24.642
Basal Area (square ft/acre) 80.596 36.275 1.813 157.546
Longleaf/Slash Pine
gleai Tree Density (trees/acre) 151.958 91.432 12.036 502.635
Group (140)
Tree Height (ft) 62.892 12.98 24.286 86.75

Biomass (Dry Merchantable Ibs/acre)  79404.631  42433.256 326.599 188968.436
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Loblolly/Shortleaf
Pine Group (160)

Oak/Pine Group (400)

Oak/Hickory Group
(500)

Oak/Gum/Cypress
Group (600)

Elm/Ash/Cottonwood
Group (700)

Potapov Global Canopy Height

Basal Area (square ft/acre)

Tree Density (trees/acre)

Tree Height (ft)

Biomass (Dry Merchantable Ibs/acre)
Potapov Global Canopy Height

Basal Area (square ft/acre)

Tree Density (trees/acre)

Tree Height (ft)

Biomass (Dry Merchantable Ibs/acre)
Potapov Global Canopy Height

Basal Area (square ft/acre)

Tree Density (trees/acre)

Tree Height (ft)

Biomass (Dry Merchantable Ibs/acre)
Potapov Global Canopy Height

Basal Area (square ft/acre)

Tree Density (trees/acre)

Tree Height (ft)

Biomass (Dry Merchantable Ibs/acre)
Potapov Global Canopy Height

Basal Area (square ft/acre)

Tree Density (trees/acre)

Tree Height (ft)

Biomass (Dry Merchantable Ibs/acre)
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18.103

92.618

194.21

59.342

76832.036

19.347

81.404

140.308

59.56

76596.455

20.482

79.729

132.868

61.009

78594.98

19.719

86.697

135.667

59.642

81688.048

18.283

70.169

118.006

57.356

58373.997

4.506

43.739

110.042

14.613

47865.701

4.941

39.686

60.296

12.051

52575.258

5.326

40.481

63.257

11.769

51496.137

5.143

45.402

69.707

13.811

56359.21

6.413

40.303

65.245

10.843

40678.232

0

0.821

6.018

13

38.787

0

1.702

6.018

24

410.738

0

1.344

6.018

15

720.916

0

0.821

6.018

15

138.359

0

1.88

6.018

21

161.241

28.619
254.062
613.841
120.333

274006.206
27

199.861
324.974
96.308
296254.248

29.304
219.788
421.263
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267274.395

27.072
235.534
385.155
104.267

302004.198
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87.35
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Table A5-4. Count of FIA plots versus digitized cropland, urban, and water plots used in the Forest Type
classification model. FIA survey data came from the years 2014 - 2017.

Data Source

FIA Plots

Digitized Cropland
Digitized Developed
Digitized Water

Total

N

1994

200

100

40

2338

A6. Spectral and Textural Indices

Table A6-1. GLCM textural indices computed for Sentinel-1 mosaics.

Indices

Angular Second Moment (ASM)

Description

ASM is known as uniformity or energy. It measures the uniformity of an
image. When pixels are very similar, the ASM value will be large.

Contrast is a measure of intensity or gray-level variations between the

Contrast reference pixel and its neighbor
C Dissimilarity is a measure of distance between pairs of objects (pixels)
Dissimilarity . . .
in the region of interest.
Entropy Amount of irremediable chaos or disorder
Correlation shows the linear dependency of gray level values in the
Correlation co-occurrence matrix. It presents how a reference pixel is related to its
neighbor, 0 is uncorrelated, 1 is perfectly correlated.
. Variance is a measure of the dispersion of the values around the mean
Variance - . .
of combinations of reference and neighbor pixels.
Difference Measures the d_lspgrsmn (W|th regard to the mean) of the gray level
difference distribution of the image.
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Contrast Dissimilarity Entropy

Figure A6-1. Images show the Contrast, Dissimilarity, Energy, and Entropy VH indices for the Leaf Off time period over the state of Mississippi
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Greening Leaf On Leaf Off Senescence

Figure A6-2. RGB images show phenological changes over Mississippi, from left to right: Greening, Leaf On, Leaf Off, and Senescence.
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Table A6-2. Multispectral indices were computed for each Sentinel-2 mosaic.

Indices

Normalized Difference Vegetation Index
(NDVI)

Red Edge Normalized Difference Vegetation

Index (RENDVI) Variations #1, #2, #3

Normalized Difference Red Edge (NDRE)
Index Variations #1, #2, #3

Enhanced Vegetation Index (EVI)

Anthocyanin Reflectance Index (ARI)

Structure Insensitive Pigment Index (SIPI)

Modified Chlorophyll Absorption in
Reflectance Index (MCARI)

Tasseled Cap Wetness (TCWET)

Tasseled Cap Vegetation (TCV)

Tasseled Cap MSS Green Vegetation
(TCMSSV)

Tasseled Cap Brightness (TCB)

Tasseled Cap MSS Soil Brightness
(TCMSSBRI)

Mississippi CRP Forest Remote Sensing

Description

Normalized Difference Vegetation Index (NDVI) quantifies vegetation by
measuring the difference between near-infrared (which vegetation
strongly reflects) and red light (which vegetation absorbs).

This index is a modification of the traditional broadband NDVI.
Applications include precision agriculture, forest monitoring, and
vegetation stress detection. RENDVI capitalizes on the sensitivity of the
vegetation red edge to small changes in canopy foliage content, gap
fraction, and senescence.

NDRE is a spectral index that is built as a blend of several bands:
Nea-InfraRed (NIR) spectrum and a band that uses a narrow spectral
range between visible Red and NIR. NDRE is more sensitive than NDVI
for a certain period of plant maturation.

EVI can be used to quantify vegetation greenness. EVI corrects for some
atmospheric conditions and canopy background noise and is sensitive in
areas with dense vegetation.

Increases in ARl indicate canopy changes like new foliage growth or
folidage death. Anthocyanins are water-soluble pigments abundant in
newly forming leaves and those undergoing senescence.

Increases in SIPI are thought to indicate increased canopy stress.
Applications of this index include vegetation health monitoring, plant
physiological stress detection, and crop production.

MCARI gives a measure of the depth of chlorophyll absorption and is very
sensitive to variations in chlorophyll concentrations as well as variations
in Leaf Area Index (LAI). MCARI values are not affected by illumination

conditions, the background reflectance from soil, and other
non-photosynthetic materials observed.

TCWET is interpreted as an index of “wetness” (e.qg., soil or surface
moisture) or “yellowness” (e.g., amount of dead/dried vegetation).

TCV corresponds to “greenness” and is typically used as an index of
photosynthetically-active vegetation.

TCMSSYV describes variations in the rigor of green vegetation.
TCB corresponds to the overall brightness of the image.

TCMSSBRI describes variations in soil background reflectance.

31



-3
FE il p e R i L

Figure A6-3. Examples of Sentinel-2 multispectral vegetation indices (Senescence, listed clockwise from top
left: Normalized Difference Vegetation Index, Normalized Difference Red Edge Index Variation #2, Structure
Insensitive Pigment Index, Tasseled Cap Vegetation)
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A7. Model Accuracy Results

Table A7-1. Comparison between the original forest type model results and the new forest type model results
with the Potapov (2021) Global Canopy height data.

Metric

Forest Type Group - Overall

Class Metrics

Developed (10)
Water (20)

Cropland/Rangeland (30)

Longleaf/Slash Pine Group
(140)

Loblolly/Shortleaf Pine
Group (160)

Oak/Pine Group (400)

Oak/Hickory Group (500)

Oak/Gum/Cypress Group
(600)

Elm/Ash/Cottonwood
Group (700)

Original
Kappa Value

0.68
Original
Detection
Prevalence

(Area
Coverage)

0.04
0.02
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A8. Importance of Model Variables

Variable Importance: Tree Height Model
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Figure A8-1. Chart of normalized mean variable importance for the fifteen most important variables from the five
iterations of the Tree Height model.
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Variable Importance: Basal Area Model
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Figure A8-2. Chart of normalized mean variable importance for the fifteen most important variables from the five
iterations of the Basal Area model.
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Variable Importance: Tree Density Model
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Figure A8-3. Chart of normalized mean variable importance for the fifteen most important variables from the five
iterations of the Tree Density model.
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Variable Importance: Forest Type Model
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Figure A8-4. Chart of normalized mean variable importance for the fifteen most important variables from the five
iterations of the Forest Type model.

A9. GEDI Fusion Data Product Details

While the immediate GEDI data products will not provide wall-to-wall data coverage for canopy height
or biomass, independent research groups are actively working on GEDI fusion products using Landsat
and Sentinel. These products will use robust modeling approaches to estimate the gaps in data
coverage, and even have the possibility to apply the same models in reverse, backward in time, to
estimate biomass in years past. Currently, research teams are working to create demonstrative data
products that utilize GEDI-derived metrics for domain-specific applications.

A9.1 GEDI X TanDEM Fusion

New GEDI fusion products that incorporate data from Synthetic Aperture Radar are expected to be
released in the next few years. The TanDEM-X and TanDEM-L SAR missions fused with GEDI have the
potential for high-resolution wall-to-wall maps of biomass and canopy height. A formal collaboration
between GEDI and the German Space Agency (DLR) is creating advanced algorithms to combine the
wall-to-wall mapping capability of TanDEM-X (12 meter resolution) with the spatial sampling of GEDI
LiDAR. This fusion is expected to improve height and biomass estimates at a finer resolution and
accuracy than either mission can achieve alone (University of Maryland, GLAD, 2021). The TanDEM-X
mission has two spacecraft that image the earth simultaneously, with an interferometric synthetic
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aperture radar (InSAR) sensor (Qi et al., 2019). The TanDEM-L Inferomatic Radar mission, planned to
launch in 2024, will provide estimates of canopy height and biomass at a 12 meter resolution. The
Synthetic Aperture Radar techniques used by TanDEM-L are not constrained by weather and daylight,
and the L band’s wavelength (23.6 cm) is optimal for imaging the 3-D structure of vegetation (Herbert
J., n.d.). Unlike TanDEM-X, the L-band of TanDEM-L will be able to penetrate to the ground even in
extremely dense forest environments (Dubayah, 2017). Similar to a GEDI X TanDEM-X fusion, a GEDI,
and TanDEM-L fusion product will improve the accuracy of biomass and canopy height estimation
even in dense forests.

A9.2 The Ecosystem Demography Model

The Ecosystem Demography model will provide fine resolution estimates of carbon stocks and fluxes
over expansive areas. The Ecosystem Demography model will incorporate GEDI vegetation structure
data to produce high spatial resolution estimates of the carbon sequestration potential of tropical and
temperate forests under multiple Intergovernmental Panel on Climate Change (IPCC) climate and
land-use-change (University of Maryland, GLAD, 2021). Through these simulations, researchers can
assess the impacts of policies on CO2 emissions and land use (Dubayah et al., 2020).
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