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Significance

Models and maps anticipating 
how fire patterns may change in 
response to climate change and 
other drivers are important tools 
for climate- resilient protection of 
ecosystems and human 
communities. When using these 
models for decision- making, 
however, it is critical to 
understand their sources of 
uncertainty. We show that 
different geographical extents of 
model boundaries can result in 
nearly opposite future fire 
predictions for the same 
geographical areas—illustrating 
geographical variation in both 
fire regimes and their 
predictability. There is no 
one- size- fits- all prediction for fire 
futures in California or a single 
strategy to mitigate fire risk to 
people, infrastructure, and 
ecosystem resilience. Modeling 
and decision- making may be 
most reliable if constrained to 
the geographical limits of specific 
fire regimes.
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An increasing amount of California’s landscape has burned in wildfires in recent decades, 
in conjunction with increasing temperatures and vapor pressure deficit due to climate 
change. As the wildland–urban interface expands, more people are exposed to and 
harmed by these extensive wildfires, which are also eroding the resilience of terrestrial 
ecosystems. With future wildfire activity expected to increase, there is an urgent demand 
for solutions that sustain healthy ecosystems and wildfire- resilient human communities. 
Those who manage disaster response, landscapes, and biodiversity rely on mapped pro-
jections of how fire activity may respond to climate change and other human factors. 
California wildfire is complex, however, and climate–fire relationships vary across the 
state. Given known geographical variability in drivers of fire activity, we asked whether 
the geographical extent of fire models used to create these projections may alter the 
interpretation of predictions. We compared models of fire occurrence spanning the 
entire state of California to models developed for individual ecoregions and then pro-
jected end- of- century future fire patterns under climate change scenarios. We trained 
a Maximum Entropy model with fire records and hydroclimatological variables from 
recent decades (1981 to 2010) as well as topographic and human infrastructure predic-
tors. Results showed substantial variation in predictors of fire probability and mapped 
future projections of fire depending upon geographical extents of model boundaries. 
Only the ecoregion models, accounting for the unique patterns of vegetation, climate, 
and human infrastructure, projected an increase in fire in most forested regions of the 
state, congruent with predictions from other studies.

fire regime | climate change | California | fire distribution model | ecoregion

California has long been associated with wildfires and the devastating human impacts that 
wildfires can cause. For example, the Bel Air Fire of 1961 and the Oakland Hills fire in 
1991 had such an impact that they are still discussed today (1–3). In recent years, California 
wildfire has become even more prominent in the media and the scientific literature, as 
the state has experienced a record- breaking number of large fires (4), many of which have 
resulted in unprecedented loss of life and property (5), leaving many communities to deal 
with complex and long- lasting delays in recovery (6). Dramatic changes in the frequency, 
severity, and timing of wildfires are also driving large- scale ecosystem changes that exceed 
the resilience of many native species (7–9). Although California may have the most 
high- profile destructive fires, record- breaking fire seasons and enormous wildfire impacts 
to human communities are happening globally. Lessons learned in California will set 
examples for the rest of the world. While there are multiple reasons for recent increases 
in wildfire activity, climate change has been largely implicated for its effects on fuel aridity 
and longer fire seasons, and there is broad concern that climate change will further increase 
fire risk in the future (10, 11). Land use change and increases in the wildland–urban 
interface will further increase human exposure to wildfire and exacerbate existing social 
vulnerabilities (12, 13). Given these serious consequences and dire predictions, there are 
strong calls and hefty financial resources for action to increase social and ecological resil-
ience to wildfire (e.g., ref. 14). Creating a fire- resilient future where people coexist with 
wildfire will require implementing multiple strategies coordinated through diverse stake-
holders that are tailored to specific social and biophysical conditions and objectives  
(15–17). The question, then, is what is needed where, when, and why?

The answer to this question is particularly complicated in California because the state 
has a wide diversity of natural fire regimes, i.e., the long- term characteristics of wildfire 
(e.g., size, severity, frequency, and seasonality) within a given ecosystem (18, 19). Variation 
in fire regimes manifests in response to the distinctive combinations of ignition patterns, 
vegetation characteristics, climatic and atmospheric conditions, and topography that char-
acterize a given region over time, as these are the factors that dictate the timing, location, 
and behavior of recurrent wildfires (20). In turn, fire regimes exert strong controls over 
ecosystem functioning and structure, and they are prominent drivers of species’ evolution 
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(21) and community assembly (22). Given the long historical links 
between fire and species’ traits and persistence (23), it is important 
to understand how altered fire regimes can greatly disrupt ecosys-
tem structure and function, to the point that ecosystems transform 
into different states (24).

Fire regimes have been altered in multiple ways for various rea-
sons. In addition to climate effects on wildfire in recent years, nearly 
a century of effective fire suppression in historically frequent- fire 
forests has led to substantial fuel accumulation and, consequently, 
a recent increase in large, uncharacteristically severe fires (25). On 
the other hand, increased human- caused fire ignitions resulting 
from population growth and urban expansion have substantially 
increased fire frequency in the shrublands that extend across the 
coastal and foothill regions of the state—areas where lightning is 
rare and where fire was historically infrequent (26, 27). Coupled 
with the increase in fire frequency, the expansion of Eurasian annual 
grasslands further promotes fire ignitions and threatens to cause 
massive vegetation change (8, 28). In previous centuries, California’s 
fire regimes were altered by Euro- American settlement and associ-
ated processes of land use and management (grazing and changes 
in herbivore assemblages, logging, mining, and fire suppression) 
(29) and removing Indigenous people and their cultural burning 
and other stewardship practices from the land (30–32). Legacies of 
these changes are reflected in the vegetation across the state today. 
In short, there is tremendous geographical variability not only in 
natural fire regimes but also in how different drivers, such as climate 
change, vegetation management, land use change, invasive species, 
and unsustainable natural resource use are affecting them. Unraveling 
these effects is an ongoing priority in scientific research (33) and 
for ecological management.

While the complex drivers of altered fire regimes need further 
investigation, one of the most important tools that managers and 
decision- makers need now for prioritization and resource alloca-
tion are maps that help them anticipate where fires are most likely 
to occur, now and in the future. To meet this demand, a rapidly 
growing number of researchers and practitioners are developing 
methods and models to produce maps reflecting the geographical 
distribution of where current and projected future fire activity are 
likely to occur (hereafter fire distribution maps; FDM). FDM are 
being used for a variety of purposes. For example, the US Fish & 
Wildlife Service is using maps of future fire potential to guide the 
location of vegetation management treatments to protect carnivore 
species of concern (34). The state of California uses future fire 
projections for informing resilience actions (35). Future fire pro-
jections have also been used to estimate wildfire risk to electricity 
transmission lines (36).

Several fire mapping and modeling approaches have been devel-
oped, such as the dynamic simulation and overlay of individual 
fire behavior maps (37). However, the most common approach is 
to use statistical or machine learning methods (38), as in species 
distribution modeling (39), such that historical observations of 
wildfires are associated with predictor variables reflecting the envi-
ronmental conditions that control where wildfires occur. The 
models are then projected onto continuous maps of the explana-
tory variables, typically including future projections of the climate 
variables used as model predictors when forecasting climate change 
effects on fire regime. One limitation of this approach is that the 
models assume the nature of fire–climate relationships will persist 
into the future, whereas both the relationships and the climate 
may present “no- analog” conditions (40).

Fire distribution maps have been produced at varying geographical 
extents, from landscape to continental (e.g., refs. 41 and 42), to map 
fire properties such as ignition locations (43), fire occurrence (44), 

locations of large fires (45), or fire severity (46). As with species 
distribution models, there have also been analyses of the sensitivity 
of model parameters and performance to predictor variable type 
and selection (e.g., ref. 47) or modeling method and algorithm 
(e.g., ref. 48). The geographical extent at which fire distribution 
models are trained and mapped is of particular interest for a state 
like California in which relationships between wildfire patterns 
and their drivers, e.g., climate–fire or human–fire relationships, are 
nonstationary (e.g., ref. 49). Thus, it is reasonable to assume that 
the direction and strength of relationships modeled in one region 
may not apply to other regions. Often, fire distribution maps and 
models are trained at large geographical extents with subsequent 
finer- scale analyses focusing on specific localities (e.g., refs. 35 and 
46). However, given the known spatial variation between fire pat-
terns and drivers, and the importance of these maps for decision-  
making, an important question is whether the treatment of geog-
raphy in these models makes a difference in outcomes for both 
baseline and future projected conditions—particularly projections 
that are important for climate change adaptation.

Although the effect of geographical modeling extent on baseline 
and future fire projections has not been systematically evaluated, 
Syphard et al. (50) found that the relative importance of different 
explanatory variables and the nature of the relationships varied 
for distribution models of fire occurrence and large fires for three 
different regions in California. In addition, Park et al. (51) per-
formed an experiment in which they compared the performance 
of models trained within smaller- scale subregions throughout 
California with the performance of models trained statewide, and 
they found that the broader- scale model produced higher model 
performance. However, they did not evaluate differences in vari-
able importance or in future fire occurrence projections under 
climate change. In this paper, we take this line of inquiry further 
and compare model results and mapped output from models 
developed to predict the probability of occurrence of fires ≥40 ha 
in size 1) across the entire state, 2) across the entire state using 
ecoregions as a predictor variable, and 3) across 10 separate ecore-
gions in California. In addition to comparing results for a baseline 
time frame (1981 to 2010), we use our models to project future 
patterns of change under climate change scenarios.

We specifically asked

1)  How do model accuracy, variable importance, and mapped 
projections vary depending on geographical extent of analysis?

2)  Does the addition of ecoregion as a predictor variable in a 
statewide analysis yield similar results as the development of 
separate models trained for each ecoregion?

3)  Are divergences in treatment of geographical extent exacer-
bated in future projections?

Results

Fire Distribution Model Performance. Fire distribution models 
(FDM) were trained using 3,902 fires occurring between 1981 
and 2010 (baseline), predicted from climate, terrain, and land 
use variables, and modeled using the Maxent algorithm, for the 
state of California (with and without ecoregion as a predictor), 
and separately for 10 ecoregions (Materials and Methods). When 
produced for all fire occurrence data statewide, models performed 
similarly well, regardless of including ecoregion as a predictor 
variable (Table 1). Interestingly, including ecoregion as a predictor 
variable in the statewide FDM led to an increase in true positive 
rate and a subsequent decrease in true negative rate (greater 
commission error—predicting fire where it did not occur).
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For the ecoregion- specific models, performance varied consid-
erably (Table 1). Across most performance metrics, the model 
constructed solely for the Modoc Plateau ecoregion performed 
the worst, likely due to the low true negative rate observed for this 
ecoregion (SI Appendix, Table S1). Ecoregion models that per-
formed better than the statewide models in at least one perfor-
mance metric included those for the largely nonforested Mojave 
Desert, the Sonoran Desert, Great Valley, and Southwestern ecore-
gions (SI Appendix, Table S1).

Differences in Spatial Predictions for Baseline Time Period (1980 
to 2010). Differences in the geographical predictions made by 
the three FDM approaches for the baseline (1980 to 2010) time 
period were spatially structured (Fig. 1). These differences were 
greatest in the Modoc Plateau, east of the Sierra Nevada, and along 
the western edge of the Sonoran and Mojave Desert ecoregions 
where they border Southwestern California (refer to Fig. 2C for 
ecoregions). The two statewide FDM showed broadly similar 
geographical patterns of predicted fire probability (Fig.  1D), 
except in the region East of the Sierra Nevada, where including 
ecoregion as a predictor led to reduced predicted fire probability, 
better representing the observed, low fire activity in this region 
than the other models (Fig. 1 G–I). While both statewide FDM 
predicted similar levels of fire probability in the Modoc Plateau, 
the local model constructed for this ecoregion predicted much 
higher fire probability, leading to overprediction that was evident 
when comparing the mapped output to observed fires (Fig. 1I). 
Compared to the statewide models, the ecoregion- specific models 
also predicted slightly higher fire probability across the Mojave 
Desert and Cascade Ranges; slightly lower fire probability across 
the Southwestern and Sonoran Desert, and a mix of differences in 
the Northwestern, Central Valley, Great Valley, and Sierra Nevada.

Environmental Predictors of Fire Probability. Topographic 
heterogeneity and temperature seasonality were the most 
important predictors of fire occurrence in both statewide models 
(Fig. 2 and SI Appendix, Figs. S1 and S2). Ecoregion ranked third 
in variable importance when it was included, while climatic water 
deficit ranked third when ecoregion was not included. Variables 
related to anthropogenic factors, including distance to urban areas 
or roads and urban density, were less important than terrain and 
climate in the statewide models. However, variable importance 
and response curves (i.e., the nature of the relationship based 
on partial dependence plots) varied greatly among ecoregion- 
specific FDM (SI Appendix, Figs. S3–S12). Although distance to 
principal roads was the least important variable in the statewide 
models, it ranked as the most important in the ecoregion East of 
the Sierra Nevada, where it had a negative relationship with fire 
probability (SI  Appendix, Fig.  S11). Similarly, housing density 

was an important ecoregion- specific factor for predicting fire 
probability in Southwestern California, where fires were least 
likely to occur in areas with high housing density (SI Appendix, 
Fig.  S12). Topographic heterogeneity was the most important 
predictor of, and positively related to, fire probability in the 
Cascade Ranges, Great Valley, Modoc Plateau, Northwestern, 
and Southwestern ecoregions (SI Appendix, Figs. S4, S7–S9, and 
S12). Temperature seasonality was most important, and inversely 
related to fire probability, in the arid, continental Mojave and 
Sonoran Deserts (SI Appendix, Figs. S5 and S6), while it was most 
important but positively related to fire in the Sierra Nevada and 
Central Western California (within those ecoregions, locations 
with greater temperature seasonality had more fire; SI Appendix, 
Figs. S4 and S10).

Projections of Fire Probability under Climate Change. Projections 
of future fire probability under climate change were highly 
dependent on model building technique (SI Appendix, Fig. S13). 
Specifically, local models built for each ecoregion often differed 
substantially from the statewide FDM in both the amount of 
fire predicted and the projected trend under climate change 
scenarios. These differences were most readily observed when 
comparing the projected change in fire probability through time 
(Fig. 3 and SI Appendix, Figs. S14 and S15). For example, while 
the statewide FDM predict a decline in fire probability across 
the forested Cascade Ranges, Northwestern, and Sierra Nevada 
ecoregions under future climate scenarios, the ecoregion- specific 
model predicts an increase in these areas. On the other hand, the 
ecoregion- specific model and statewide FDM with ecoregion as a 
predictor show similar fire probability trajectories in the Sonoran 
Desert, both predicting lower levels of fire probability than the 
FDM without ecoregion as a predictor. Overall, model- building 
technique was more important than climate change scenario in 
determining future fire probability across California. However, the 
statewide FDM without ecoregion as a predictor predicted greater 
decreases in fire probability under HadGEM2- ES RCP 8.5 in the 
Northwestern, Sierra Nevada, Great Valley, and Sonoran Desert 
ecoregions compared to the other climate change scenarios.

Discussion

Wildfire is one of the biggest challenges that the state of California 
faces in terms of both ecological and social sustainability. Altered 
fire regimes are leading to dramatic ecological transformations, 
and there are human communities still recovering from wildfires 
in 2018 and 2020; and yet, continued wildfire is inevitable. 
Building a fire- resilient future will require informed strategies that 
facilitate coexistence of humans and fire where fire is ecologically 
beneficial, while preventing excessive or destructive fires where 

Table  1. Six performance measures of fire distribution models produced for California and within ecoregions 
(ranges given for 10 ecoregions)

Performance metric
California- wide Ecoregion- specific  

(range of means)Without ecoregion With ecoregion

AUC 0.80 ± 0.01 0.80 ± 0.02 0.56 (±0.05) to 0.93 (±0.05)

TSS 0.45 ± 0.02 0.45 ± 0.02 0.22 (±0.06) to 0.082 (±0.07)

True positive rate 0.74 ± 0.05 0.82 ± 0.12 0.65 (±0.19) to 0.95 (±0.04)

True negative rate 0.71 ± 0.04 0.63 ± 0.11 0.46 (±0.27) to 0.88 (±0.06)

Sorensen index 0.73 ± 0.02 0.74 ± 0.03 0.47 (±0.19) to 0.89 (±0.05)

Inverse mean absolute error 0.64 ± 0.007 0.65 ± 0.009 0.51 (±0.01) to 0.90 (±0.01)
AUC, area under the curve (of the receiver- operator characteristic plot); TSS, true skill statistic (Materials and Methods).
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humans are most at risk and fire frequency exceeds the ecological 
resilience of natural communities. The wildfire toolbox contains 
numerous possibilities, including vegetation management and 
prescription burning at different locations, spatial extents, and 

timing intervals; ignition prevention programs; invasive species 
management; land use policy and building codes; climate adap-
tation; homeowner mitigation strategies; and fire suppression. 
Given the diverse changes in different fire regimes, the biggest 

Fig. 1. Mapped fire probability and differences between predicted fire probability, comparisons of fire probability between different modeling frameworks, 
and observed fire occurrence 1980 to 2010 for fires >40 ha. Fire probability predictions made by a statewide FDM without ecoregion as a predictor variable (M1) 
(A), a statewide FDM with ecoregion as a predictor variable (M2) (B), and a set of local models built for each ecoregion (M3) (C). Difference between mapped fire 
probabilities predicted by M1 and M2 (D), M1 and M3 (E), and M2 and M3 (F). Difference between mapped fire probabilities and fire polygons under baseline 
conditions for M1 (G), M2 (H), and M3 (I). In the bottom row, positive numbers indicate areas with predicted high fire probability but no fire occurrences during 
the study period (“overprediction”), while negative numbers correspond to areas where a fire(s) occurred, but the fire model predicted low fire probability 
(“underprediction”). In each panel, the histogram shows the frequency distribution of pixels for the values shown in that panel’s map.
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challenge for decision makers is to identify which strategies pro-
vide the most benefits where, and with the fewest costs. In all 
cases, maps showing where fire is most likely to occur now and in 
the future are an important tool for addressing this challenge. The 
key to their effectiveness is understanding their appropriate appli-
cation in the face of model uncertainty.

In this study, in which we compared statewide fire distribution 
maps to maps produced separately for different ecoregions, we 
found that the geographical extent of analysis resulted in substan-
tial variation in model accuracy, variable importance and direction 
of influence, and spatial prediction, especially when projecting 
fire under future climate conditions. On the other hand, using 
ecoregion as a predictor variable in the statewide model did not 
greatly affect model accuracy or output, although a higher com-
mission error resulted in larger areas being mapped as suitable for 
fire in some ecoregions. These results have strong implications for 
the interpretation of mapped fire predictions.

At a statewide geographical extent, models produced with and 
without ecoregion as a predictor performed similarly (AUC 0.80). 
Park et al. (51) found similar model performance for an annual 
fire distribution model for California (AUC 0.77), which per-
formed slightly better when developed statewide than it did for 
separate subregions (mean AUC 0.72), although individual AUCs 
were not provided. On the other hand, our model performance 
varied widely for the ecoregion- specific models, with some ecore-
gions having better model performance than the statewide model, 
and some worse.

Among the ecoregions in our study with the highest model 
performance, the desert ecoregions and Central Valley experience 
relatively low fire activity. However, they border the Southwestern 
region, which had high model performance and has the largest 

amount of fire in the state (SI Appendix, Table S2). Therefore, the 
overall amount of fire in a region did not influence model perfor-
mance, but there was an effect of ecoregion conditions. The 
higher- performing ecoregions are largely dominated by nonfor-
ested vegetation, and the primary driver of altered fire regimes has 
been an increase in fire frequency due to human- caused ignitions, 
and in some areas, the expansion of flammable invasive grasslands 
(29, 52–54). On the other hand, the lower- performing ecoregions 
farther north had higher proportions of forest, with many of these 
forests having experienced increased fuel accumulation and 
uncharacteristically large, severe fires in recent years due to legacies 
of fire suppression (55). Whereas human influence via population 
growth and land use change has been a strong driver of wildfire 
in coastal and lower- elevation shrublands, the higher- elevation 
conifer forests are the areas in the state where climate has exhibited 
a more direct influence on fire activity (49). These forests have 
also experienced massive tree mortality in response to drought and 
insect attack (56).

Although wildfire in California is driven by a combination of 
human, topographic, vegetation, and climatic variables, it is the 
differences in spatial and temporal patterns of these drivers (i.e., 
the fire regime) that most likely explains the variation between 
ecoregion and statewide models. Geographical differences were 
evident in the different rankings of variable importance and the 
variation in nature and direction of statistical response curves. This 
is consistent with another study using FDM in three California 
regions that reported regional differences in variable ranking and 
response curves (40). These results also reflect findings in empirical 
studies showing geographical variation in historical fire–climate 
relationships (57–59). Fire activity has also been shown to vary 
across aridity and productivity gradients (60–62).

Fig. 2. Variable importance for (A) the two statewide fire distribution models without ecoregion as a predictor variable and (B) with ecoregion as a predictor, 
as well as (C) the variable importance within each ecoregion for the ecoregion- specific FDMs and a map of the ecoregions used in this study.
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Local variation in fire–environment relationships may represent 
smaller segments of broad, nonlinear response curves that span a 
fuller range of environmental conditions, potentially contained 
within larger areas, like California (51). However, even given pre-
dictable responses of fire to broad gradients of fuel and moisture 
conditions, those fire–environment relationships are mediated 
locally by other unique characteristics of the region which comprise 
the fire regime. For example, human- caused ignitions corresponding 
to Santa Ana winds are responsible for many of the large, destructive 
wildfires in southern California (63), and those wind- driven fires 
have distinctive spatial patterns (64). The California- wide models 
of fire probability estimated in this study and others, therefore mix 
data from different fire regimes. In contrast, ecoregions, being 
defined based on vegetation mosaics, climate, and physiography, 
are reasonable approximations of regions that support a single fire 
regime (e.g., the historical Fire Regime Groups shown in refs. 25 
and 52). An important consideration is that, despite the large 
amount of research on California wildfire, we still have an incom-
plete understanding of the environmental drivers of wildfire occur-
rence, particularly over different spatial and temporal scales.

While statewide models performed well for baseline conditions, 
they estimated fire response curves that mixed the effects of envi-
ronment on fire from different fire regimes. Thus, models devel-
oped for ecoregions were generally better at reproducing expected 
relationships between environment and fire within a particular 

fire regime. In some of the poorer- performing ecoregions, how-
ever, it is possible that we did not include the most relevant pre-
dictor variables.

For example, some of the poorer- performing, higher- elevation 
forested regions experience more lightning than other parts of the 
state (65), and have also been altered due to legacies of fire suppres-
sion (55), so it is possible that predictors delineating lightning strike 
potential, vegetation management, or fire history, might improve 
the performance of those models. It is also possible that some of 
our ecoregion boundaries did not accurately delineate distinctive 
fire regimes. Alternative methods exist for stratifying larger regions 
into smaller extents for modeling fire (e.g., refs. 19, 66, and 67).

Another important consideration is that our FDM projected 
fire occurrence as a function of long- term climate normals instead 
of shorter- term meteorological events that are more likely to influ-
ence fire behavior and interannual variability in wildfire activity. 
Whereas 30- y averages capture cumulative spatial differences in 
climatic variation, they do not account for extreme wind or 
weather conditions that often result in the most destructive wild-
fires (68) or in seasons with anomalously high fire activity (69). 
While our baseline models did not account for the years of high 
fire activity after 2010, many of the larger fires in recent years have 
occurred in the lower- performing ecoregions.

One of the most serious implications in choosing a geographical 
extent for FDM is illustrated in the large discrepancy in future 

Fig. 3. Projected temporal trends in fire probability- weighted area across each ecoregion in California for the model types (color) and climate change scenarios 
(line type) explored in the current study. Note that the y- axis limits vary by ecoregion, to highlight the differences between model type and climate change scenario.
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climate projections. Models built using fire occurrence data from 
all of California, with and without ecoregion as a predictor, 
predicted declining fire probability across the state under  
most climate change scenarios and in most ecoregions. On the 
other hand, most of the northern forested ecoregion- specific 
models projected increased or stable fire occurrence under cli-
mate change. The direction of projected change was most similar 
in the desert ecoregions.

In general, climate change is likely to have variable effects on 
future fire activity depending on the extent to which fire in a region 
is limited by vegetation amount (fuel volume) or vegetation mois-
ture (fuel flammability) (70). With fire regimes as diverse as they 
are in California, it is counterintuitive and unlikely to expect cli-
mate to result in a net decline of fire across the entire state. Some 
research projected a net increase of fire in California due to climate 
change (47), and others projected climate- driven increases in area 
burned or fire frequency in northern and coastal forested regions 
with decreases in desert areas, which is generally similar to our 
ecoregion- specific results (71, 72). The probability of large fires 
was projected to increase under two climate scenarios in two north-
ern California regions, with minimal effect of climate in southern-
most San Diego County (50). FDM created for Mediterranean 
ecosystems worldwide also projected spatially heterogeneous 
responses of fire to climate change under a range of climate models 
(73). The authors suggested these differences may be owing to the 
nature of Mediterranean ecosystems that encompass divergences 
in fuel moisture versus fuel volume limitations to fire.

The downward trend in fire occurrence predicted by our state-
wide model is likely due to climate models predicting levels of 
temperature seasonality and climatic water deficit throughout 
many parts of California that are currently only observed in the 
arid desert regions, which tend to experience lower fire occurrence 
due to lower fuel volume. Because our models did not explicitly 
consider vegetation as a predictor variable, the statewide models 
erroneously predicted desert- like levels of future fire occurrence 
across much of California as temperature seasonality and climatic 
water deficit were forecast to increase to unprecedented levels 
(desert- like climate in places without a legacy of desert- like vege-
tation). In this sense, our statewide model differs from other state-
wide FDM that predicted stronger increases in wildfires, parti cularly 
in densely vegetated areas (e.g., refs. 35, 47, 71, and 72). This may 
be partly because the other models used different climate models 
(GCMs) or different combinations of climate variables. In some 
studies, a combination of actual evapotranspiration and climatic 
water deficit has been explicitly included to account for the bal-
ance between fuel moisture and volume (e.g., refs. 50, 74, and 
75). We used climatic water deficit here, but instead of actual 
evapotranspiration, we used temperature seasonality due to low 
correlation with other variables. Climatic water deficit is generally 
among the most important predictors of fire and forest structure 
(76), but temperature seasonality, or range, has also been a strong 
climatic driver of wildfire (77, 78). Although some ecoregion 
models performed worse than the statewide models, they were 
nevertheless more likely to predict increasing fire probability where 
there were larger areas of forests and other fire- prone vegetation, 
as expected.

Although maps of future wildfire conditions are highly desired 
for climate- resilient and ecologically sustainable management and 
resource allocation decisions, the model differences illustrated 
here highlight the notion that there is major uncertainty involved 
in predicting fire in the future, particularly for longer- term pro-
jections (58). Few FDM explicitly include vegetation- related 
variables to project future fire distributions, partly because future 
vegetation is difficult to predict. Not only will there be direct 

influences of climate on plant species distributions (79), but 
future fire may also be reduced through current burning of veg-
etation (80); alternatively, certain plant species could increase fire 
activity if positive feedbacks are triggered with invasive species, 
which are primarily invasive annual grasses and forbs in California 
(81). Fire–climate–vegetation relationships will also likely be 
mediated, or disrupted, by human influences (28, 51, 59). The 
inability to seamlessly account for interactions and feedbacks 
among wildfires, climate, vegetation, and land use change, or 
interactions with other forest disturbances such as insect out-
breaks, wind- throw, or drought- related mortality is a drawback 
to the statistical approach of FDM.

Our results suggest that developing FDMs with a geographical 
extent and scale that captures variation in fire regimes may be 
preferable to broader- scale models for making landscape- level 
decisions. Although smaller geographical extents limit the poten-
tial for transferring models onto different geographies, the advan-
tage is that the models may better capture unique fire–environment 
relationships inherent to a specific region. These may also improve 
future forecasts restricted to those regions. There is great diversity 
in fire regimes worldwide, and there have been efforts to map them 
(82). Fire mapping at the scale of fire regimes is a result we would 
therefore expect to extend to any fire- prone region.

As Keeley and Syphard (58) said, “predicting future fire regimes 
is not rocket science; it is far more complicated than that.” Fire 
distribution models can be informative tools for delineating the 
parts of the landscape with the highest likelihood of burning and 
help establish priorities for management actions to preserve eco-
system function, biodiversity, and sustainable human communi-
ties. While there are a range of management approaches available, 
there has already been substantial research illustrating the potential 
benefits of different strategies in different locations. For example, 
in dry mixed- conifer forests, there are well- established cobenefits 
of strategic vegetation management and cultural burning practices 
that may not only reduce the potential for severe fire killing eco-
logically important older forests but may also reduce fire risk to 
communities in the vicinity (83). In coastal shrublands, where 
positive feedbacks between wildfire and invasive annual grasses 
have been widely documented, actions such as ignition prevention 
and invasive species management may best meet mutual objectives 
of protecting community safety while conserving biodiversity (4). 
Recent research shows that, despite the variety of factors that con-
tribute to destructive wildfires, proximity to the WUI is by far the 
most important factor distinguishing fires that result in structure 
loss from those that do not (68). Therefore, land use planning to 
reduce human exposure to wildfire is another option with poten-
tial mutual benefits, not only in California but in fire- prone loca-
tions globally (15). Furthermore, regardless of geographic region, 
there is substantial evidence that homeowner mitigation actions 
can increase the likelihood that structures survive wildfires (84, 
85). For fire management and policy decisions in an era of global 
change, the most important consideration for California and 
beyond is that one size does not fit all and that geography plays 
an important role in how and where fires will continue to burn.

Materials and Methods

Study Area and Ecoregions. The study area is the state of California (423,971 
km2) which spans about 13 degrees of latitude and 4,000 m of elevation, 
including the lowest and highest points in the conterminous USA. Complex 
topography is primarily a result of recent tectonic activity. Both north- south and 
east- west trending mountain ranges ring the central valley, once a vast grass-
land and seasonal wetland, now almost entirely converted to agriculture (86). 
Annual precipitation ranges from >300 cm on the northwest coast to <5 cm in D
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the southern deserts, and the mountainous topography modifies precipitation 
patterns through orographic uplift and rain shadows (87). The Jepson Ecoregions 
(88) used in these analyses divide the state into major ecological regions sharing 
similar climate, topography, flora, and vegetation mosaics. Eighty percent of the 
state lies within the California Floristic Province—CFP (Northwestern, Cascade 
Range, Sierra Nevada, Great Valley, Central Western, and Southwestern ecore-
gions)— characterized by a Mediterranean- type climate (cool wet winters, warm 
dry summers) and exceptionally high plant diversity with 20% of all vascular 
plant species found in the United States, 37% of which are endemic (89, 90). 
Vegetation of the CFP spans chaparral (evergreen shrublands), coastal scrub, and 
oak woodlands and grasslands in the south and at lower elevations in valleys and 
foothills, to mixed evergreen, conifer, montane, and subalpine forests in the north 
and at higher elevations. The northeastern Modoc Plateau and East Sierra Nevada 
are part of the interior, cold- arid Great Basin Province, with dry forests, woodlands, 
and shrub–steppe vegetation. The southeastern Mojave and Sonoran Deserts 
are hot and arid, found in the Desert Province, and dominated by desert scrub 
vegetation, with some desert chaparral and dry woodland at higher elevations and 
near ecoregion boundaries (91). Most of the CFP is fire- prone due to moderate to 
high plant productivity combined with a lengthy dry season; consequently, many 
of the plants are adapted to the diverse fire regimes found there (92).

Response and Predictor Variables. We used fire perimeter data from 
the California Department of Forestry and Fire Protection’s Fire and Resource 
Assessment Program [FRAP (93)]. These data provide the most comprehensive 
spatially explicit delineation of fire perimeters in the state, including most fires 
≥10 acres (0.04 km2), although unburned islands within perimeters are typi-
cally not delineated (94) We selected perimeter data between 1981 and 2010 
to match the temporal extent of baseline climate data used as predictors (see 
below). Previous fire distribution modeling approaches have used a variety of 
response variables, such as small or large fire occurrence, fire ignition location, 
fire frequency, or area burned. We focused here on occurrence of large fires, as this 
accounts for most fire activity without including fires that are so small that they 
delineate the location of ignitions, which have distinctly different spatial patterns 
than those of large fires or area burned (41, 50). We tested the sensitivity of our 
results to fire occurrence of two different sizes: ≥40 ha and ≥100 ha. After initially 
finding similarity in results, we continued using the dataset with fires ≥40 ha, as 
this size has been used to define “large fires” in previous studies (e.g., refs. 34, 
60, and 78) and provided a larger sample size (3,902 vs. 2,787 fire perimeters).

To represent fire presence, we generated a random sample of points within 
fire perimeters. We determined the number of points per perimeter as the square 
root of the ratio between the area of a given fire and the smallest fire area [after 
(45)]. We also sampled fire absences by randomly distributing 14,220 points in 
unburned areas. We used these absences data in model validation (see below). 
Because we used Maxent models, we also sampled background data by randomly 
distributing 100,000 points throughout California.

We explored several predictor variables related to climate, terrain, and 
human infrastructure (SI  Appendix, Tables  S3 and S4). All predictor variables 
were cropped to the extent of California and resampled to 270 m resolution 
(SI Appendix, Fig. S16), which was the resolution of the climate data and the 
coarsest resolution of all the predictor variables. Our previous work suggests that 
270 m is an appropriate scale for modeling climate- landscape phenomena in 
this region (95). For distance to all roads and principal roads, we calculated the 
nearest distance between roads and a cell of 270 m resolution. Distance to urban 
areas was derived from the land use data for 2010 sourced from the Integrated 
Climate and Land Use Scenarios (SI Appendix, Table S3). To do so, we selected 
those raster values related to low and high urban density (classes 13 and 14, 
respectively). Then we binarized land use data assuming 1 for those cells classified 
as low and high urban density (i.e., cell values of 13 and 14, respectively) and 
0 for any other land use classes. ICLUS data were upscaled from 90 to 270 m by  
averaging the binarized values. We assumed as urban all those cells with >0.50 % 
urban presences class; finally, we calculated the minimum distance of each cell 
to urban cells. Topographic heterogeneity was generated based on a 90- m dig-
ital elevation model by calculating the range in elevation of a focal cell and the 
three- cell radius around it. Finally, topographic heterogeneity was upscaled to 
270 m resolution.

We performed a Pearson correlation analysis for all of California (SI Appendix, 
Fig. S17) and assumed highly correlated variables were those with r >|0.7| (96). 

Then, we calculated univariate Maxent models for the seven variables that showed 
high correlation (see details of Maxent model procedure below) and selected 
those that returned higher performance (SI Appendix, Fig. S18) for fire distribu-
tion modeling. We also performed a Pearson correlation analysis of the predictor 
variables for each ecoregion (SI Appendix, Fig. S19).

Fire Distribution Modeling. We constructed three types of FDM: (i) statewide 
FDM, (ii) statewide FDM with ecoregions, and (iii) ecoregion- specific FDM. 
The difference between (i) and ii) is that the latter model used ecoregions as a 
categorical predictor variable in addition to the other environmental variables 
(SI  Appendix, Table  S3). We considered ecoregions as a categorical predictor 
variable to determine whether it would improve model performance over the 
statewide geographical extent without modeling individual ecoregions sepa-
rately, which is what we did for (iii). We used Maxent (81) to construct FDMs 
for baseline climate conditions (1981 to 2010) and projected them to 2040 to 
2069 and 2070 to 2099. Future conditions were defined by two global circulation 
models (GCMs) from the 5th Coupled Model Intercomparison Project, Centre 
National de Recherches Meteorologiques Coupled Global Climate Model, version 
5 (CNRM- CM5) and Hadley Centre Global Environment Model version 2—Earth 
System model (HadGEM2- ES), and two representative concentration pathways 
(RCPs), RCP 4.5 and 8.5 (97) (SI Appendix, Fig. S20). We selected these GCMs 
because they are recommended for bracketing a wide range of climate conditions 
appropriate for California (98). They were downscaled to 270 m using the Basin 
Characterization Model (99).

Given that model hyperparameters could affect the degree of model complex-
ity, performance, and geographical probability patterns (100, 101), we performed 
a sensitivity test to find the best hyperparameter combination for our datasets. 
For each model, we tested 189 hyperparameter combinations based on 21 reg-
ularization multiplier values ranging from 0.4 to 6 and nine combinations of 
features linear (L), quadratic (Q), hinge (H), product (P), and threshold (T) (i.e., 
LQH, LQP, LQT, QHP, QHT, HPT, LQHP, QHPT, and LQHPT). In addition, because two 
statewide models accounted for large presence- absence and background point 
datasets, we randomly sampled them to perform hyperparameter tuning (i.e., 
we used 7,110 presences, 7,110 absences, and 25,000 background points). After 
completing the hyperparameter tuning, new final models were run with entire 
datasets and the best hyperparameters.

Because we projected our model onto different time periods, we used spa-
tially structured block- cross validation based on four partitions to evaluate model 
transferability more directly (102, 103). Given that the size of the blocks could 
affect how data are partitioned, we tested 70 different sizes between 25 and 
135 km resolution. For each candidate size, we tested the spatial autocorrelation 
(measured by Moran’s I), environmental similarity (based on Euclidean distance), 
and differences in the amount of data among partition groups (SD). The size that 
best fits the data was the one that equilibrated these three parameters [(104); 
SI Appendix, Figs. S21 and S22)]. To be more rigorous with model validation, 
we fit models with presences and background points data for each partition but 
validated with presences and absences data. We used the AUC (Area Under the 
Curve), IMAE (Inverse Mean Absolute Error, calculated as 1- MAE) as threshold- 
independent performance metrics (105), and the TSS (True Skill Statistic), 
Sorensen, True Positive and True Negative Rate as threshold- dependent metrics 
(106) based on the threshold at which the sum of the sensitivity and specificity 
is the highest (107). We used complementary log- log probability for Maxent 
predictions (108).

In addition to reporting performance metrics, we also explored model per-
formance in geographic space by mapping the difference between spatial pre-
dictions made by each FDM and the fire perimeters from 1981 to 2010 (fire 
probability = 1). Using this approach, high values correspond to areas where the 
FDM predicted high fire probability, but there was no fire during the study period, 
while low values indicate areas in which a fire occurred but were predicted to have 
low fire probability by the FDM. Values close to 0 indicate areas of agreement 
between the FDM and the fire perimeters (Fig. 1 G–I).

Calculating Variable Importance. To calculate variable importance for the FDM, 
we developed model predictions for each observation of the original occurrence 
and background data, representing the full model results. For each predictor 
variable, we permuted the values between observations, and a model prediction 
was made for each observation using the shuffled dataset for five permutations. D
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At each permutation, we computed a Pearson correlation between reference pre-
dictions and the predicted values from the shuffled data. The importance score 
is calculated as 1 − correlation coefficient. The final variable importance score 
for each variable is expressed as a percentage of the sum of all mean scores. 
We used the R packages biomod2, ecospat, and fitMaxnet to calculate variable 
importance (109–111).

Exploring Fire Probability under Climate Change Scenarios. To summarize 
the predicted trends in fire probability under each climate change scenario and 
model- building procedure, we compared the fire probability- weighted area 
(km2) across each ecoregion under each set of models and climate scenarios. 
This approach sums the continuous probability pixels within each ecoregion.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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