The purpose of this research is to better conserve biodiversity by improving land allocation modeling software. Here we introduce a planning support framework designed to be understood by and useful to land managers, stakeholders, and other decision-makers. With understanding comes trust and engagement, which often yield better implementation of model results. To do this, we break from traditional software such as Zonation and Marxan with Zones to prototype software that instead first asks the project team and stakeholders to make a straightforward multi-criteria decision tree used for traditional site evaluation analyses. The results can be used as is or fed into an algorithm for identifying a land allocation solution that is efficient in meeting several objectives including maximizing habitat representation, connectivity, and adjacency at a set cost budget. We tested the framework in five pilot regions and share the lessons learned from each, with a detailed description and evaluation of the fifth (in the central Sierra Nevada mountains of California) where the software effectively met the multiple objectives, for multiple zones (Restoration, Innovation, and Observation Zones). The framework is sufficiently general that it can be applied to a wide range of land use planning efforts.
This article was chosen as one of the Editor’s Choice Articles of Section “Landscape Ecology” in 2020 and 2021. https://www.mdpi.com/about/announcements/4677
Many citizen science projects are place-based, built on in-person participation and motivated by local conservation. When done thoughtfully, this approach to citizen science can transform humans and their environment. Despite such possibilities, many projects struggle to meet decision-maker needs, generate useful data to inform decisions, and improve social-ecological resilience. Here, we define leveraging the ‘power of place’ in citizen science, and posit that doing this improves conservation decision making, increases participation, and improves community resilience. First, we explore ‘place’ and identify five place dimensions: social-ecological, narrative and name-based, knowledge-based, emotional and affective, and performative. We then thematically analyze 134 case studies drawn from CitSci.org (n = 39), The Stewardship Network New England (TSN-NE; n = 39), and Earthwatch (n = 56) regarding: (1) use of place dimensions in materials (as one indication of leveraging the power of place), (2) intent for use of data in decision-making, and (3) evidence of such use. We find that 89% of projects intend for data to be used, 46% demonstrate no evidence of use, and 54% provide some evidence of use. Moreover, projects used in decision making leverage more (t =−4.8, df =117;p b 0.001) place dimensions (x=3.0;s =1.4) than those not used in decision making (x=1.8;s =1.2). Further, a Principal Components Analysis identifies three related components (aesthetic, narrative and name-based, and social-ecological). Given these findings, we present a framework for leveraging place in citizen science projects and platforms, and recommend approaches to better impart intended outcomes. We discuss place in citizen science related to relevance, participation, resilience, and scalability and conclude that effective decision making as a means towards more resilient and sustainable communities can be strengthened by leveraging the power of place in citizen science.
A workshop on ‘Sustainability in Higher Education from the vantage of the Global South’ was organized by the Azim Premji University between 12 and 14 January 2015 in Bengaluru, India. Its goal was to explore how sustainability can be integrated into undergraduate, postgraduate and professional courses. The workshop was divided into four sessions with interlinked themes – the irst, with a focus on framing sustainability; the second, on integraing sustainability in higher educaion; the third, on sustainability curricula; and the last, on pedagogy for sustainability. All four sessions were informed by the broader educaional goal of enabling students from diverse backgrounds to envision, conceptualise, research and implement sustainability in varied personal and professional contexts. Paricipants of the workshop drew upon their varied experiences, from India and insituions across the world, in the teaching and learning of the mulidimensional concept of sustainability in diverse geographies. The quesions, counterquesions, discussions and potenial soluions raised during the workshop are presented in this paper in a dialogic style.
Ecosystem services play a crucial role in sustaining human well-being and economic viability. People benefit substantially from the delivery of ecosystem services, for which substitutes usually are costly or unavailable. Climate change will substantially alter or eliminate certain ecosystem services in the future. To better understand the consequences of climate change and to develop effective means of adapting to them, it is critical that we improve our understanding of the links between climate, ecosystem service production, and the economy. This study examines the impact of climate change on the terrestrial distribution and the subsequent production and value of two key ecosystem services in California: (1) carbon sequestration and (2) natural (i.e. nonirrigated) forage production for livestock. Under various scenarios of future climate change we predict that the provision and value of ecosystem services decline under most, but not all, future greenhouse gas trajectories. The predicted changes would result in decreases in the economic output for the state and global economy and illustrate some of the hidden costs of climate change. Since existing information is insufficient to conduct impact analysis across most ecosystem services, a comprehensive research program focused on estimating the impacts of climate change on ecosystem services will be important for understanding, mitigating and adapting to future losses in ecosystem service production and the economic value they provide.
This paper represents a collaboration by conservation practitioners, ecologists, and climate change scientists to provide specific guidance on local and regional adaptation strategies to climate change for conservation planning and restoration activities. Our geographic focus is the Willamette Valley-Puget Trough-Georgia Basin (WPG) ecoregion, comprised of valley lowlands formerly dominated by now-threatened prairies and oak savannas. We review climate model strengths and limitations, and summarize climate change projections and potential impacts on WPG prairies and oak savannas. We identify a set of six climate-smart strategies that do not require abandoning past management approaches but rather reorienting them towards a dynamic and uncertain future. These strategies focus on linking local and regional landscape characteristics to the emerging needs of species, including potentially novel species assemblages, so that prairies and savannas are maintained in locations and conditions that remain well-suited to their persistence. At the regional scale, planning should use the full range of biological and environmental variability. At the local scale, habitat heterogeneity can be used to support species persistence by identifying key refugia. Climate change may marginalize sites currently used for agriculture and forestry, which may become good candidates for restoration. Native grasslands may increasingly provide ecosystem services that may support broader societal needs exacerbated by climate change. Judicious monitoring can help identify biological thresholds and restoration opportunities. To prepare for both future challenges and opportunities brought about by climate change, land managers must incorporate climate change projections and uncertainties into their long-term planning.
CBI has designed and launched a new Data Basin Gateway (Atlas) for the Wildlife Conservation Society Canada focusing on the Yukon Territory to assist WCS Canada researchers and their conservation partners in the region to develop effective protection of wildlife and plants being impacted by a host of environmental stressors, with special emphasis on climate change. In addition to the branded and curated gateway with relevant datasets, we have co-produced a customized application for stakeholders to view and download species distribution models (SDM) for 66 endemic plants designed to predict future changes in their distribution due to climate change. The Atlas houses relevant datasets for conservation planning in the climate-sensitive Yukon region and the tool houses the SDMs, which in combination provide powerful resources for WCS Canada and its partners to effectively plan for resilience.
An example of a map created in the WCS Yukon Data Basin Atlas showing First Nation Territories overlaid on Ross river breeding bird habitat suitability layer
The Yukon Spatial data tool showing projected climate refugia for a Inuvialuit Planning region in the Yukon
As the Sierra Nevada town of Paradise rebuilds after the devastating Camp Fire of 2018, the community has an opportunity to incorporate strategies to increase its resilience to fire and climate change, enhance the safety and well-being of its residents, and at the same time care for the surrounding natural areas that make it a beautiful place to live.
CBI and the The Nature Conservancy helped Paradise seize this opportunity when the Paradise Recreation and Park District asked us to help them explore community design principles that could provide all of these benefits. The CBI team created geographic models of “Wildfire Risk Reduction Buffers” between the structures and the surrounding wildlands to reduce exposure of homes to wildfire risks. These buffers, which can be made up of parklands, orchards, and other low fire-risk land uses, can be managed to provide many benefits, including buffering homes from ignition, providing safe-haven refuges for residents to escape from fire, strategically-placed staging areas for fire-fighters, recreational access to open space, and protecting natural habitat from the effects of an encroaching urban landscape.
The team combined spatial data about the landscape with local knowledge to prioritize locations for fire risk-reduction and analyzed ignition risks and co-benefits with and without the buffers. The resulting maps illustrate the potential for local partnerships to make a real difference in the town’s future. Through innovative thinking about the role of land use planning, the community of Paradise is changing its approach to living with fire and providing a model for fire-prone communities everywhere.
CBI is supporting the U.S. Forest Service (Region 8) in its efforts toward shared forest stewardship activities. Region 8 contains approximately 244 million acres of forestland, most of which (87%) is privately owned. The Forest Service manages around 5% of the southern forests within 14 National Forests and two Special Units with other public forests make up the remaining 8%. Because of the mixed ownership, close collaboration and shared stewardship is of paramount importance.
CBI has created a customized and curated Data Basin Gateway for the U.S. Forest Service (usfssouth.databasin.org) that supports forest stewardship organizations to access data and information to advance collaborative forest management planning. To demonstrate how to use this framework, a pilot state (North Carolina) was chosen (nc.usfssouth.databasin.org). This gateway uses the “All Lands Strategy” concept to showcase example workflows to facilitate more effective forest management and monitoring across North Carolina. CBI and the North Carolina Shared Stewardship team created supporting training materials is the form of video tutorials and how to materials.
The Conservation Biology Institute’s recent work with the Deschutes Trails Coalition (DTC) and the Deschutes National Forest focuses on designing a Trails Assessment and Planning Tool for Deschutes County. We have developed a blueprint for the design, in collaboration with the U.S. Forest Service and the DTC. In this new phase of the project, funded by the U.S. Forest Service, CBI will partner with the DTC to build a prototype of the trails decision-support tool and sustainability model for Deschutes County. Then we will scale up and customize this prototype to meet the requirements of the U.S. Forest Service and its partners in the states of Oregon and Washington. The Trail Assessment and Planning Tool design includes creating a preliminary version of a sustainability framework that incorporates an interactive spatially-explicit model, addressing the physical, environmental, social, and economic aspects of sustainability. The model is powered by CBI’s Environmental Evaluation Modelling System (EEMS), allowing for its collaborative development with a diverse group of stakeholders, to create a transparent framework for local, regional, and national organizations to answer important questions relevant to trails planning and management.
Proxy Falls, Oregon
Michael Riffle / Flickr
In 2006, the Micronesia Challenge began as a commitment by the Republic of Palau, Guam, the Commonwealth of the Northern Mariana Islands, the Federated State of Micronesia, and the Republic of the Marshall Islands to preserve the marine and terrestrial resources crucial to the survival of the Pacific traditions, cultures, and livelihoods. The overall goal of the initial Micronesia Challenge was to effectively conserve at least 30% of the near-shore marine resources and 20% of the terrestrial resources across Micronesia by 2020.
During the 24th Micronesia Island Forum in 2019, the regional leadership recognized the success of the first 15 years of the Micronesia Challenge and endorsed the new Micronesia Challenge 2030 goals to effectively manage 50% of the marine resources and 30% of terrestrial resources by 2030.
In 2016, the USFS Forest Inventory and Analysis (FIA) team, regional partners and CBI developed the Micronesia Challenge Regional Terrestrial Monitoring Initiative tool (mcterrestrialmeasures.org) to allow users to visualize the spatial data from the Micronesia Challenge monitoring effort by regional framework indicator(s) that measure the status of managed conservation areas set aside under the program. The first version of the tool included forest data collected between 2003 and 2018 and determined the status and trends in forest area, forest health, understory vegetation, biomass, and carbon storage.
In this new phase of work, the Terrestrial Measure Initiative tool will be updated with the most recent data and information. The team also plans to develop a webinar presentation to communicate with local stakeholders and others about the tool and the ongoing success of the Micronesia Challenge.