Fuzzy logic modeling is a useful method for evaluating landscapes for conservation and resource planning and has been successfully used in different types of ecological and environmental studies. A variety of software packages have been produced to facilitate fuzzy logic modeling, but each is either associated with a specific computer program or does not comprise a complete modeling system. The Environmental Evaluation Modeling System (EEMS) is a platform-independent fuzzy logic modeling framework for environmental decision support. EEMS has been designed so that it can easily be adapted to work with different file types and interface with other software systems. It has been implemented to work with NetCDF and CSV file formats as a command line application, in the ArcGIS ModelBuilder environment, and as part of a web-based data exploration tool. In a performance test, EEMS was run using a dataset with four million reporting units per map layer and yielded execution times of less than 30 s.Results from an EEMS model for Utah and the Colorado Plateau show a complex pattern of site sensitivity.

This article examines trends in farming and livelihood activities among forest-dwelling Adivasi farmers (Soligas) in a tiger reserve from 2008 to 2015. In-depth semistructured interviews were conducted in two contrasting, but representative, villages, where traditional mixed-crop farming was being replaced by cash crops such as coffee, maize, and cotton. Access to state-subsidized food supply and increase in cash income through wage labor, coupled with increasing depredation of food crops by wild animals, were some causes for the shift to cash crops. Declining supply of non-timber forest produce (NTFP) and the subsistence cash it provided has also impacted farmer livelihoods and indirectly contributed to this shift. The changing aspirations of younger Soligas and inadequate state support for mixed-crop farming also could be contributing factors. Soligas consistently maintained that increased wildlife depredation of food crops, reduction in supplies of wild foods, and the decline in NTFP was due to poor forest health. The transition to cash crops improved cash flows but exposed the Soligas to market risks. While food security also improved, the nutritional quality of diet declined. Soligas are adopting new farming practices, diets, and livelihood strategies, and importantly, leveraging rights historically denied to them, all a reflection of their social resilience.

Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of  management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of  biodiversity conservation and fire risk reduction, or whether the maximization of  one objective comes at a detriment to the other. Using a fixed budget and number of  homes slated for development, we simulated 20 years of  housing growth under alternative conservation selection strategies, and then projected the mean risk of  fires destroying structures and the area and configuration of  important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If  no conservation lands were purchased, or if  purchases were prioritized based on cost or likelihood of  development, both the projected fire risk and biodiversity impacts were much higher than if  conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of  the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region. These results likely generalize to any place where high species richness overlaps with hazardous wildland vegetation.

Seedling establishment is a critical step that may ultimately govern tree species’ distribution shifts under environmental change. Annual variation in the location of seed rain and microclimates results in transient “windows of opportunity” for tree seedling establishment across the landscape. These establishment windows vary at fine spatiotemporal scales that are not considered in most assessments of climate change impacts on tree species range dynamics and habitat displacement. We integrate field seedling establishment trials conducted in the southern Sierra Nevada and western Tehachapi Mountains of southern California with spatially downscaled grids of modeled water-year climatic water deficit (CWDwy) and mean August maximum daily temperature (Tmax) to map historical and projected future microclimates suitable for establishment windows of opportunity for Quercus douglasii, a dominant tree species of warm, dry foothill woodlands, and Q. kelloggii, a dominant of cooler, more mesic montane woodlands and forests. Based on quasi-binomial regression models, Q. douglasii seedling establishment is significantly associated with modeled CWDwy and to a lesser degree with modeled Tmax. Q. kelloggii seedling establishment is most strongly associated with Tmax and best predicted by a two-factor model including CWDwy and Tmax. Establishment niche models are applied to explore recruitment window dynamics in the western Tehachapi Mountains, where these species are currently widespread canopy dominants. Establishment windows are projected to decrease by 50–95%, shrinking locally to higher elevations and north-facing slopes by the end of this century depending on the species and climate scenario. These decreases in establishment windows suggest the potential for longer-term regional population declines of the species. While many additional processes regulate seedling establishment and growth, this study highlights the need to account for topoclimatic controls and interannual climatic variation when assessing how seedling establishment and colonization processes could be affected by climate change.

Survival of early life stages is key for population expansion into new locations and for persistence of current populations (Grubb 1977, Harper 1977). Relative to adults, these early life stages are very sensitive to climate fluctuations (Ropert-Coudert et al.2015), which often drive episodic or event-limited regeneration (e.g. pulses) in long-lived plant species (Jackson et al. 2009). Thus, it is difficult to mechanistically associate 30-yr climate norms to dynamic processes involved in species range shifts (e.g. seedling survival). What are the consequences of temporal aggregation for estimating areas of potential establishment? We modeled seedling survival for three widespread tree species in California, USA (Quercus douglasii,Q. kelloggii, Pinus sabiniana) by coupling a large-scale, multi-year common garden experiment to high-resolution downscaled grids of climatic water deficit and air temperature (Flint and Flint 2012, Supplementary material Appendix 1). We projected seedling survival for nine climate change projections in two mountain landscapes spanning wide elevation and moisture gradients. We compared areas with windows of opportunity for seedling survival defined as three consecutive years of seedling survival in our species, a period selected based on studies of tree niche ontogeny (Supplementary material Appendix 1) to areas of 30-yr averaged estimates of seedling survival. We found that temporal aggregation greatly underestimated the potential for species establishment (e.g. seedling survival) under climate change scenarios.

Context Predicting climate-driven species’ range shifts depends substantially on species’ exposure to climate change. Mountain landscapes contain a wide range of topoclimates and soil characteristics that are thought to mediate range shifts and buffer species’ exposure. Quantifying fine-scale patterns of exposure across mountainous terrain is a key step in understanding vulnerability of species to regional climate change.

Objectives We demonstrated a transferable, flexible approach for mapping climate change exposure in a moisture-limited, mountainous California landscape across 4 climate change projections under phase 5 of the Coupled Model Intercomparison Project (CMIP5) for mid-(2040–2069) and end-of-century (2070–2099).Methods We produced a 149-year dataset (1951–2099) of modeled climatic water deficit (CWD), which is strongly associated with plant distributions, at 30-m resolution to map climate change exposure in the Tehachapi Mountains, California, USA. We defined climate change exposure in terms of departure from the 1951–1980 mean and historical range of variability in CWD in individual years and 3-year moving windows.

Results Climate change exposure was generally greatest at high elevations across all future projections, though we encountered moderate topographic buffering on poleward-facing slopes. Historically dry lowlands demonstrated the least exposure to climate change.

Conclusions In moisture-limited, Mediterraneanclimate landscapes, high elevations may experience the greatest exposure to climate change in the 21st century. High elevation species may thus be especially vulnerable to continued climate change as habitats shrink and historically energy-limited locations become increasingly moisture-limited in the future.

Climate change has already affected southern California where regional increases in temperature and vegetation shifts have been observed. While all the CMIP5 temperature projections agree on a substantial level of warming throughout the year, there is fair bit of divergence in the magnitude and seasonality of projected changes in rainfall. While desert plants and animals are generally adapted to extreme conditions, some species may be approaching their physiological threshold. We calculated the climate velocity of both temperature and aridity (PPT/PET) in SE California to illustrate the spatial variability of climate projections and reported on the probable expansion of barren lands reducing current species survivorship. We used a vegetation model to illustrate both temporal and spatial shifts in land cover in response to changes in environmental conditions. Such information is useful to plan land use for renewable energy siting in the region.

Brown, M. 2015. Creating Useful and Usable Climate Tools for Sagebrush Land Management Through Scientist and Manager Collaboration, Oregon State University thesis. http://hdl.handle.net/1957/56343

The sagebrush ecosystem, home to numerous plant and animal species including big sagebrush (Artemisia tridentata) and the endemic greater sage-grouse (Centrocercus urophasianus), has endured fragmentation and degradation of both quantity and quality due to the cumulative and synergistic relationships between an abundance of individual disturbances including grazing, invasive annuals and fire. Climate change may now be an additional threat that poses the greatest risk to these imperiled habitats. Natural resource agencies such as the Bureau of Land Management (BLM) seek to conserve sagelands through land management activities that ensure the survival of sage-grouse and continuity of the sagebrush biome. Web-based climate tools can help convey climate information that may be necessary for long-term land management, but these tools may not agree with the needs of land managers, may be too complex, or may be misinterpreted. To overcome barriers of user compatibility, the participation of both climate scientists and land managers is necessary during tool development. With the collaboration of Oregon and Idaho BLM sagebrush land managers and climate scientists, this study sought to assess land manager needs and define the criteria for useful and useable climate tools. Using an initial online survey, individual phone interviews with land managers, and a follow-up online survey, a series of land management activities and related climate variables were identified, and several web-based climate tools were assessed. Most managers perform vegetation management through a variety of means including seeding and herbicide application. Such activities are affected by the magnitude and timing of precipitation and temperature, as well as other variables, on seasonal and annual timeframes. For planning purposes land managers also need information on long-term 10-20 year climate trends. The act of listening to the needs of land managers uncovered communication barriers, and provided feedback on existing climate tools emphasizing accessibility, dependability and consistency, clear explanation of terminology, effective visualizations, and relevant spatial and temporal scales to the scope of management activities. We also identified a need for basic information and education on the location of existing climate tools and climate impacts, and a need for near-term forecasting tools that could bridge the gap between weather (≤ 6 months) and climate (≥ 30 years) projections.

Terra Magazine, Oregon State University’s research magazine, featured Brown’s research.

The dynamic global vegetation model (DGVM) MC2 was run over the conterminous US at 30arc sec (~800m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B, B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment. The wildfires maintained prairie-forest ecotones in the Great Plains. With simulated fire suppression, the number and impacts of wildfires was reduced since only catastrophic fires were allowed to escape. This greatly increased the expansion of forests and woodlands across the western US and some of the ecotones disappeared. However, when fires did occur their impacts (both extent and biomass consumed) were very large. We also evaluated the relative influence of human land use including forest and crop harvest by running the DGVM with land use (and fire suppression) and simple land management rules. From 2041 through 2060, carbon stocks (live biomass, soil and dead biomass) of US terrestrial ecosystems varied between 155 and 162 Pg C across the three emission scenarios when potential natural vegetation was simulated. With land use, periodic harvest of croplands and timberlands as well as the prevention of woody expansion across the West reduced carbon stocks to a range of 122-126 Pg C while effective fire suppression reduced fire emissions by about 50%. Despite the simplicity of our approach, the differences between the size of the carbon stocks confirm other reports of the importance of land use on the carbon cycle over climate change.

Climate change adaptation and mitigation require understanding of vegetation response to climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate vegetation for the Northwest United States using results from 20 different Climate Model Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. Results were generated for representative concentration pathways (RCPs) 4.5 and 8.5 under vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for future projections. For analysis, results were aggregated by three subregions: the Western Northwest (WNW), from the crest of the Cascade Mountains west; Northwest Plains and Plateau (NWPP), the non-mountainous areas east of the Cascade Mountains; and Eastern Northwest Mountains (ENWM), the mountainous areas east of the Cascade Mountains. In the WNW, mean fire interval (MFI) averaged over all climate projections decreases by up to 48%, and potential vegetation shifts from conifer to mixed forest under RCP 4.5 and 8.5 with and without fire suppression. In the NWPP MFI averaged over all climate projections decreases by up to 82% without fire suppression and increases by up to 14% with fire suppression resulting in woodier vegetation cover. In the ENWM, MFI averaged across all climate projections decreases by up to 81%, subalpine communities are lost, but conifer forests continue to dominate the subregion in the future.