Fuzzy logic modeling is a useful method for evaluating landscapes for conservation and resource planning and has been successfully used in different types of ecological and environmental studies. A variety of software packages have been produced to facilitate fuzzy logic modeling, but each is either associated with a specific computer program or does not comprise a complete modeling system. The Environmental Evaluation Modeling System (EEMS) is a platform-independent fuzzy logic modeling framework for environmental decision support. EEMS has been designed so that it can easily be adapted to work with different file types and interface with other software systems. It has been implemented to work with NetCDF and CSV file formats as a command line application, in the ArcGIS ModelBuilder environment, and as part of a web-based data exploration tool. In a performance test, EEMS was run using a dataset with four million reporting units per map layer and yielded execution times of less than 30 s.Results from an EEMS model for Utah and the Colorado Plateau show a complex pattern of site sensitivity.

This article examines trends in farming and livelihood activities among forest-dwelling Adivasi farmers (Soligas) in a tiger reserve from 2008 to 2015. In-depth semistructured interviews were conducted in two contrasting, but representative, villages, where traditional mixed-crop farming was being replaced by cash crops such as coffee, maize, and cotton. Access to state-subsidized food supply and increase in cash income through wage labor, coupled with increasing depredation of food crops by wild animals, were some causes for the shift to cash crops. Declining supply of non-timber forest produce (NTFP) and the subsistence cash it provided has also impacted farmer livelihoods and indirectly contributed to this shift. The changing aspirations of younger Soligas and inadequate state support for mixed-crop farming also could be contributing factors. Soligas consistently maintained that increased wildlife depredation of food crops, reduction in supplies of wild foods, and the decline in NTFP was due to poor forest health. The transition to cash crops improved cash flows but exposed the Soligas to market risks. While food security also improved, the nutritional quality of diet declined. Soligas are adopting new farming practices, diets, and livelihood strategies, and importantly, leveraging rights historically denied to them, all a reflection of their social resilience.

Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of  management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of  biodiversity conservation and fire risk reduction, or whether the maximization of  one objective comes at a detriment to the other. Using a fixed budget and number of  homes slated for development, we simulated 20 years of  housing growth under alternative conservation selection strategies, and then projected the mean risk of  fires destroying structures and the area and configuration of  important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If  no conservation lands were purchased, or if  purchases were prioritized based on cost or likelihood of  development, both the projected fire risk and biodiversity impacts were much higher than if  conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of  the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region. These results likely generalize to any place where high species richness overlaps with hazardous wildland vegetation.

Seedling establishment is a critical step that may ultimately govern tree species’ distribution shifts under environmental change. Annual variation in the location of seed rain and microclimates results in transient “windows of opportunity” for tree seedling establishment across the landscape. These establishment windows vary at fine spatiotemporal scales that are not considered in most assessments of climate change impacts on tree species range dynamics and habitat displacement. We integrate field seedling establishment trials conducted in the southern Sierra Nevada and western Tehachapi Mountains of southern California with spatially downscaled grids of modeled water-year climatic water deficit (CWDwy) and mean August maximum daily temperature (Tmax) to map historical and projected future microclimates suitable for establishment windows of opportunity for Quercus douglasii, a dominant tree species of warm, dry foothill woodlands, and Q. kelloggii, a dominant of cooler, more mesic montane woodlands and forests. Based on quasi-binomial regression models, Q. douglasii seedling establishment is significantly associated with modeled CWDwy and to a lesser degree with modeled Tmax. Q. kelloggii seedling establishment is most strongly associated with Tmax and best predicted by a two-factor model including CWDwy and Tmax. Establishment niche models are applied to explore recruitment window dynamics in the western Tehachapi Mountains, where these species are currently widespread canopy dominants. Establishment windows are projected to decrease by 50–95%, shrinking locally to higher elevations and north-facing slopes by the end of this century depending on the species and climate scenario. These decreases in establishment windows suggest the potential for longer-term regional population declines of the species. While many additional processes regulate seedling establishment and growth, this study highlights the need to account for topoclimatic controls and interannual climatic variation when assessing how seedling establishment and colonization processes could be affected by climate change.

Brown, M. 2015. Creating Useful and Usable Climate Tools for Sagebrush Land Management Through Scientist and Manager Collaboration, Oregon State University thesis. http://hdl.handle.net/1957/56343

The sagebrush ecosystem, home to numerous plant and animal species including big sagebrush (Artemisia tridentata) and the endemic greater sage-grouse (Centrocercus urophasianus), has endured fragmentation and degradation of both quantity and quality due to the cumulative and synergistic relationships between an abundance of individual disturbances including grazing, invasive annuals and fire. Climate change may now be an additional threat that poses the greatest risk to these imperiled habitats. Natural resource agencies such as the Bureau of Land Management (BLM) seek to conserve sagelands through land management activities that ensure the survival of sage-grouse and continuity of the sagebrush biome. Web-based climate tools can help convey climate information that may be necessary for long-term land management, but these tools may not agree with the needs of land managers, may be too complex, or may be misinterpreted. To overcome barriers of user compatibility, the participation of both climate scientists and land managers is necessary during tool development. With the collaboration of Oregon and Idaho BLM sagebrush land managers and climate scientists, this study sought to assess land manager needs and define the criteria for useful and useable climate tools. Using an initial online survey, individual phone interviews with land managers, and a follow-up online survey, a series of land management activities and related climate variables were identified, and several web-based climate tools were assessed. Most managers perform vegetation management through a variety of means including seeding and herbicide application. Such activities are affected by the magnitude and timing of precipitation and temperature, as well as other variables, on seasonal and annual timeframes. For planning purposes land managers also need information on long-term 10-20 year climate trends. The act of listening to the needs of land managers uncovered communication barriers, and provided feedback on existing climate tools emphasizing accessibility, dependability and consistency, clear explanation of terminology, effective visualizations, and relevant spatial and temporal scales to the scope of management activities. We also identified a need for basic information and education on the location of existing climate tools and climate impacts, and a need for near-term forecasting tools that could bridge the gap between weather (≤ 6 months) and climate (≥ 30 years) projections.

Terra Magazine, Oregon State University’s research magazine, featured Brown’s research.

The dynamic global vegetation model (DGVM) MC2 was run over the conterminous US at 30arc sec (~800m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B, B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment. The wildfires maintained prairie-forest ecotones in the Great Plains. With simulated fire suppression, the number and impacts of wildfires was reduced since only catastrophic fires were allowed to escape. This greatly increased the expansion of forests and woodlands across the western US and some of the ecotones disappeared. However, when fires did occur their impacts (both extent and biomass consumed) were very large. We also evaluated the relative influence of human land use including forest and crop harvest by running the DGVM with land use (and fire suppression) and simple land management rules. From 2041 through 2060, carbon stocks (live biomass, soil and dead biomass) of US terrestrial ecosystems varied between 155 and 162 Pg C across the three emission scenarios when potential natural vegetation was simulated. With land use, periodic harvest of croplands and timberlands as well as the prevention of woody expansion across the West reduced carbon stocks to a range of 122-126 Pg C while effective fire suppression reduced fire emissions by about 50%. Despite the simplicity of our approach, the differences between the size of the carbon stocks confirm other reports of the importance of land use on the carbon cycle over climate change.

Climate change adaptation and mitigation require understanding of vegetation response to climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate vegetation for the Northwest United States using results from 20 different Climate Model Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. Results were generated for representative concentration pathways (RCPs) 4.5 and 8.5 under vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for future projections. For analysis, results were aggregated by three subregions: the Western Northwest (WNW), from the crest of the Cascade Mountains west; Northwest Plains and Plateau (NWPP), the non-mountainous areas east of the Cascade Mountains; and Eastern Northwest Mountains (ENWM), the mountainous areas east of the Cascade Mountains. In the WNW, mean fire interval (MFI) averaged over all climate projections decreases by up to 48%, and potential vegetation shifts from conifer to mixed forest under RCP 4.5 and 8.5 with and without fire suppression. In the NWPP MFI averaged over all climate projections decreases by up to 82% without fire suppression and increases by up to 14% with fire suppression resulting in woodier vegetation cover. In the ENWM, MFI averaged across all climate projections decreases by up to 81%, subalpine communities are lost, but conifer forests continue to dominate the subregion in the future.

Context 

Wildfires destroy thousands of buildings every year in the wildland urban interface. However, fire typically only destroys a fraction of the buildings within a given fire perimeter, suggesting more could be done to mitigate risk if we understood how to configure residential landscapes so that both people and buildings could survive fire.

Objectives

Our goal was to understand the relative importance of vegetation, topography and spatial arrangement of buildings on building loss, within the fire’s landscape context.

Methods 

We analyzed two fires: one in San Diego, CA and another in Boulder, CO. We analyzed Google Earth historical imagery to digitize buildings exposed to the fires, a geographic information system to measure some of the explanatory variables, and FRAGSTATS to quantify landscape metrics. Using logistic regression we conducted an exhaustive model search to select the best models.

Results

The type of variables that were important varied across communities. We found complex spatial effects and no single model explained building loss everywhere, but topography and the spatial arrangement of buildings explained most of the variability in building losses. Vegetation connectivity was more important than vegetation type.

Conclusions 

Location and spatial arrangement of buildings affect which buildings burn in a wildfire, which is important for urban planning, building siting, landscape design of future development, and to target fire prevention, fuel reduction, and homeowner education efforts in existing communities. Landscape context of buildings and communities is an important aspect of building loss, and if taken into consideration, could help communities adapt to fire.

Global Vegetation Dynamics: Concepts and Applications in MC1 model describes the creation in the mid 1990s, architecture, uses, and limitations of the MC1 dynamic global vegetation model (DGVM) that is being used by an increasing number of research groups around the world. The scientific foundation of most models is often poorly documented and difficult to access, and a centralized source of information for MC1, including the complete list of over eighty papers and reports with MC1 results will be useful to scientists and users who want to better understand the model and the output it generates.

Global Vegetation Dynamics: Concepts and Applications in MC1 model will be a valuable resource for students and researchers in the fields of climate change science, conservation science, biogeochemistry and ecology, as well as for land managers looking for a better understanding of the projections of climate change impacts and of the tools that have been developed to produce them.

Table of Contents

Part I: General Description of the Model MC1

1  History and General Description of the Dynamic Global Vegetation Model MC1- Dominique Bachelet

2  Historical Climate and Suppression Effects on Simulated Fire and Carbon Dynamics in the Conterminous United States-James M Lenihan and Dominique Bachelet

3  Challenges and Limitations of Using a DGVM for Local to Regional Applications- Dominique Bachelet, Brendan M Rogers, and David R Conklin

4  The Making of a Dynamic General Vegetation Model, MC1- Ronald P Neilson

Part II: Examples of Projects Using MC1 at Various Spatial Scales

5  A Brief Description of the VINCERA Project; Vulnerability and Impacts of North American Forests to Climate Change: Ecosystem Responses and Adaptation- David T Price, Daniel Scott, Mark R Lomas, Daniel W McKenney, Dominique Bachelet, Raymond J Drapek, James M Lenihan, Ronald P Neilson, F I Woodward, and Jonathan A Foley

6  Continent wide Simulations of a Dynamic Global Vegetation Model over the United States and Canada under Nine AR4 Future Scenarios- Raymond J Drapek, John B Kim, and Ronald P Neilson

7  Drivers of Future Ecosystem Change in the US Pacific Northwest: The Role of Climate, Fire, and Nitrogen- Brendan M Rogers, Dominique Bachelet, Raymond J Drapek, Beverly E Law, Ronald P Neilson, and John R Wells 91

8  Application of MC1 to Wind Cave National Park: Lessons from a Small Scale Study- David A King, Dominique Bachelet, and Amy J Symstad

9  Simulating Effects of Climate and Vegetation Change on Distributions of Martens and Fishers in the Sierra Nevada, California, Using Maxent and MC1- Wayne D Spencer, Heather Rustigian Romsos, Ken Ferschweiler, and Dominique Bachelet

Part III: Packaging MC1 Results to Increase Its Usability by Managers

10  Using a Dynamic Global Vegetation Model to Help Inform Management Decisions- Joshua S Halofsky, Jessica E Halofsky, David R Conklin, Dominique Bachelet, Miles A Hemstrom, Becky K Kerns, and Anita T Morzillo

11  Bringing MC1 Model Results to Data Basin to Facilitate Access, Distribution, and Interpretation- Dominique Bachelet and the CBI Data Basin team

Appendix: Publications and Reports Featuring MC1

Glossary

Index

The 1994 Northwest Forest Plan (NWFP) shifted federal lands management from a focus on timber production to ecosystem management and biodiversity conservation. The plan established a network of conservation reserves and an ecosystem management strategy on ~10 million hectares from northern California to Washington State, USA, within the range of the federally threatened northern spotted owl (Strix occidentalis caurina). Several subsequent assessments—and 20 years of data from monitoring programs established under the plan—have demonstrated the effectiveness of this reserve network and ecosystem management approach in making progress toward attaining many of the plan’s conservation and ecosystem management goals. This paper (1) showcases the fundamental conservation biology and ecosystem management principles underpinning the NWFP as a case study for managers interested in large-landscape conservation; and (2) recommends improvements to the plan’s strategy in response to unprecedented climate change and land-use threats. Twenty years into plan implementation, however, the U.S. Forest Service and Bureau of Land Management, under pressure for increased timber harvest, are retreating from conservation measures. We believe that federal agencies should instead build on the NWFP to ensure continuing success in the Pacific Northwest. We urge federal land managers to (1) protect all remaining late-successional/old-growth forests; (2) identify climate refugia for at-risk species; (3) maintain or increase stream buffers and landscape connectivity; (4) decommission and repair failing roads to improve water quality; (5) reduce fire risk in fire-prone tree plantations; and (6) prevent logging after fires in areas of high conservation value. In many respects, the NWFP is instructive for managers considering similar large-scale conservation efforts.