Assessing the impact of ecological considerations on forest and shrubland biomass projections

In response to the environmental consequences of burning fossil fuels, particularly climate change, and rising energy prices, alternative energy sources are being actively sought throughout the world. Renewable energy sources can help to meet growing energy demands while reducing environmental costs. One widely promoted alternative is biomass energy derived from dedicated biomass crops, as well as from forest and fire management activities. While biomass energy shows some promise as a clean, renewable, and domestic alternative to fossil fuels, it can conflict with critical ecological values and sustainability goals if not properly planned for and implemented.  In order to move toward ecological sustainability, biomass energy production must not degrade these important ecological values.  However, existing projections of available forest and shrubland biomass resources in the U.S. have not adequately taken these values into consideration.

The Natural Resources Defense Council (NRDC) commissioned CBI to evaluate the effect that ecological constraints would have on estimates of forest and shrubland biomass resources available for energy production in California, as assessed by the California Energy Commission in 2005.  California, home to many biologically diverse and unique areas, has been a leader in developing biomass as a potential source of energy as the demand for electrical power continues to rise.  The current contribution from biomass to electrical power in California is very small, but current and future biomass resources could be effectively developed to contribute as much as 15 percent of electrical energy demands by 2020. Rapid development of biomass as an energy alternative in California and elsewhere without careful consideration of the overall environmental impact could help achieve climate change abatement goals on the one hand but devastate important biological and ecological values on the other.  Accounting for these effects is an initial step towards reducing the environmental impact and risk to important conservation values as biomass development planning and implementation moves ahead. Using available spatial datasets, CBI’s GIS-based analysis quantified and mapped the changes to the current forest and shrubland biomass estimates after accounting for ecological values, such as old growth forest and critical habitat, and the wildland-urban interface.

Project Details



Services Provided

Databasin Items

Project Lead & Contact

Related Reports