Season effects many characteristics of populations and, as a result, the interpretations of surveys conducted at different seasons. We explored seasonal variation in occupancy using data from four studies on the Pacific marten Martes caurina. Detection surveys were conducted during winter and summer using either cameras or track stations. We conducted a ‘multiple location, paired season’ analysis using data from all four study areas and a ‘multiple season’analysis using seasonally replicated occupancy data collected at one of the areas. In the former analysis, summer occupancy estimates were significantly lower than winter and per visit probabilities of detection were indistinguishable between seasons. The probabilities of detection for the complete survey protocol were high (0.83 summer, 0.95 winter). Where summer and winter surveys were replicated, probability of occupancy was > 5 times higher in winter (0.52) than summer (0.09). We considered the effect of seasonal variation in occupancy on the habitat models developed using summer and winter survey data. Using the same habitat suitability threshold (0.5), the weighted average of winter models predicted significantly more suitable habitat than summer models. The habitat predicted by the summer model was at higher elevation, and was distributed among more, and smaller, patches of habitat than the model developed using winter data. We expect a similar magnitude of differences if summer or winter data were used to monitor occupancy. The higher occupancy in winter is probably due to the abundance of young animals detected during dispersal. Summer survey results reflect the distribution of territory-holding adults, thus these surveys may reliably detect breeding individuals and represent reproductive habitat. The implications of season on the interpretation of survey results, and corresponding habitat models and monitoring programs, provide a challenge to managers that make decisions about habitat management for martens, and other species with disparate occupancy among seasons.

Publication Details

Full Article

Journal

Date

CBI Authors + Contributors